首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were undertaken to determine the effects of cereal grain and fibre (hay or straw) supplements on the fatty acid composition of milk fat of grazing dairy cows in early lactation. In both experiments, grain supplements significantly increased (P < 0.05) the proportion of the endogenously synthesized 10:0-16:0 fatty acids. Of the C18 acids, the proportion of 18:0 and 18:3 was significantly decreased (P < 0.05) by grain supplementation, while that of 18:2 was significantly increased (P < 0.05). Irrespective of diet, 18:1 trans-11 was the most dominant trans 18:1 isomer in milk fat. In the first experiment, the proportions of the 18:1 trans-11 isomer and conjugated linoleic acid (CLA, 18:2 cis-9, trans-11) were highest for the pasture-only diets, and significantly (P < 0.05) decreased with grain supplementation. The opposite result was observed in the second experiment, conducted in a different dairy region, suggesting that factors such as the quality of pasture on offer and the physiological state of the cow could affect the content of CLA and trans fatty acids in milk fat. In both experiments, there was a significant positive linear relationship between CLA and 18:1 trans-11. Fibre supplements had little effect on the fatty acid composition of the milk.  相似文献   

2.
Two experiments were run concurrently to determine the effect of fresh forage consumption on the production and proportions of plasma and milk fat vaccenic acid (VA), conjugated linoleic acid (CLA), and linolenic acid in diary cattle. In experiment 1, the cows consumed 50, 65, and 80% of their feed intake as pasture with the remainder of intake as a barley-based concentrate. The proportion of VA in milk fatty acids increased 12% when pasture intake increased from 50 to 65% of total dry matter intake and VA, CLA, and linolenic acid proportions increased 26, 18, and 27%, respectively, as pasture increased from 65 to 80% of dietary intake. In experiment 2, fresh forage was compared to conserved hay (cut from the same pasture the previous summer) to determine the effect on plasma and milk fat VA, CLA, and linolenic acid. Also, the effect of crushed solin seed (a flax cultivar that is high in linoleic acid) supplementation to the fresh forage diet was determined. Fresh forage compared to conserved hay in the diet, increased the proportion of CLA in the plasma very low density lipoproteins (VLDL) fraction by 71% but had no effect on linolenic acid. Supplementation of the fresh forage diet with a linoleic acid source increased VA and CLA in the plasma VLDL fraction 25 and 58% and slightly decreased the proportion of linolenic acid. Fresh forage, compared to conserved hay, increased milk fat VA and CLA proportions by 22 and 15%. Supplementing the fresh forage diet with linoleic acid from crushed solin seed further increased milk fat VA and CLA proportions 41 and 25%. Solin supplementation in a lactation diet is a superior method to increase CLA levels in milk fat than feeding fresh forage alone.  相似文献   

3.
Unidentified constituents in fresh pasture increase milk fat cis-9, trans-11 conjugated linoleic acid (CLA) concentration, and prevent milk fat depression, even though ruminal conditions conducive to reducing milk fat synthesis exist. One possible explanation is vitamin E (kappa-tocopherol), a constituent high in fresh pasture, but naturally low in conserved/dried forages and cereal grains. Twenty late-lactating dairy cows previously consuming a total mixed ration (TMR) were randomly allocated to one of two dietary treatments for 21 d: TMR (control; n=10); and TMR plus an additional 10,000 i.u. alpha-tocopherol/d (VIT E; n = 10). These cows were simultaneously compared with 13 late-lactation dairy cows previously grazing fresh pasture (PAS) balanced for age, parity and genetic merit. Average daily alpha-tocopherol intakes were approximately 468, 10,520 and 1,590 i.u./cow for the control, VIT E and PAS treatments, respectively. Dietary alpha-tocopherol supplementation (VIT E v. control) slightly increased milk fat content by 0.23 percentage units, but did not significantly alter milk fatty acid composition. Plasma trans-11 18:1 (VA) content tended to increase and trans-10 18:1 levels numerically declined following alpha-tocopherol supplementation suggesting possible changes in rumen biohydrogenation products. In addition, increased alpha-tocopherol intake in TMR-fed cows decreased serum urea levels and tended to alter milk fat 15:0 suggesting changes in rumen microbial populations. However, when compared with cows grazing pasture, TMR-fed cows supplemented with alpha-tocopherol, still produced milk with lower cis-9, trans-11 CLA and VA, and higher trans-10 18:1 concentrations suggesting alpha-tocopherol is not a primary reason for milk fatty acid profile differences between pasture and TMR-fed cows. Therefore, additional unknown pasture constituents favour production of fatty acids originating from the cis-9, trans-11 instead of the trans-10, cis-12 CLA biohydrogenation pathways.  相似文献   

4.
Conjugated linoleic acids (CLA) found in ruminant milk fat are a byproduct of incomplete biohydrogenation of lipids by ruminal bacteria. We examined the effect of different dietary fat supplements and processing methods on CLA. In trial 1, dietary supplements of Ca salts of fatty acids from canola oil, soybean oil, and linseed oil increased CLA content of milk fat by three- to fivefold over the control diet. Trials 2 and 3 examined the effect of processing methods for heat treatment of full fat soybeans. In trial 2, extrusion, micronizing, and roasting resulted in two- to threefold greater concentrations of CLA in milk fat than the control diet (raw ground soybeans). In trial 3, different temperatures of extrusion (120, 130, and 140 degrees C) increased the CLA content of milk fat to a similar extent; CLA averaged 19.9 mg/g of fatty acids for the extrusion treatments compared with 4.2 mg/g of fatty acids for the control diet (raw ground soybeans). Fish oil (200 and 400 ml/d) was examined in trial 4 and both levels resulted in CLA concentrations in milk fat that were about threefold greater than the control diet. In trial 5, grain and silage from a high oil corn hybrid increased the CLA content of milk fat; however, responses were modest with the CLA concentration (mg/g of fatty acids) averaging 4.6 and 2.8 for diets with high oil hybrid and normal hybrid, respectively. Similarly, dietary supplements of animal fat byproducts (tallow plus yellow grease; trial 6) resulted in modest increases in the CLA content of milk fat. Overall, several dietary manipulations involving lipid sources and processing methods were identified that allow for a marked increase in the conjugated linoleic acid content of milk fat.  相似文献   

5.
Based on potential health benefits, there is a need to develop effective strategies for enhancing milk fat concentrations of cis-9 18:1, 18:3 n-3 and conjugated linoleic (CLA) content in milk without compromising the sensory or storage characteristics of processed milk or dairy products. Sixteen Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-d experimental periods and a 4 x 2 x 2 factorial arrangement of treatments to evaluate the effects of forage conservation method, concentrate level and supplements of propylene glycol (PG), and their interactions on milk fatty acid composition and vitamin content. Experimental treatments consisted of four conserved forages offered ad libitum, supplemented with two levels of a standard concentrate (7 or 10 kg/d) and PG (0 and 210 g/d) fed as three equal meals. Primary growths of timothy and meadow fescue sward were conserved by ensiling with none (NA), an inoculant enzyme preparation (IE) or a formic acid based (FORM) additive or as hay 1 week later. Conservation of grass by drying rather than ensiling resulted in lower forage 18:2n-6, 18:3n-3, total fatty acid and fat-soluble vitamin concentrations. In spite of lower intakes, milk fat 18:2n-6 and 18:3n-3 content was higher (P < 0.05) for hay than for silage diets (12.1, 9.6, 9.6 and 9.3 and 5.00, 3.51, 4.27 and 2.93 g/kg total fatty acids, for hay, NA, IE and FORM silages, respectively). Forage conservation method had no clear effects on milk trans 18:1 or CLA content. Compared with silage, hay diets resulted in milk containing lower (P < 0.001) riboflavin, alpha-tocopherol and beta-carotene concentrations, but had no effect on ascorbic acid, thiamine, pyridoxine or retinol content. Feeding more concentrates had no effect on milk fatty acid composition or milk vitamin content, other than lowering (P < 0.001) 16:0 concentrations from 348 to 338 g/kg fatty acids. Supplements of PG led to small (P < 0.05) increases in milk 13:0 anteiso and 15:0 content from 1.06 and 11.3 to 1.22 and 12.6 g/kg fatty acids and reduced (P < 0.05) the concentrations of ascorbic acid (16.1 v. 15.1 g/kg milk).  相似文献   

6.
Thirty-one Holstein cows (six ruminally cannulated) were used to evaluate milk fatty acids (FA) composition and conjugated linoleic acid (CLA) content on three dietary treatments: 1) total mixed rations (TMR), 2) pasture (Avena sativa L.) plus 6.7 kg DM/d of corn-based concentrate (PCorn), and 3) pasture plus PCorn with 0.8 kg DM/d of Ca salts of unsaturated FA replacing 1.9 kg DM/d of corn (PFat). No differences were found in total (22.4 kg/d) or pasture (18.5 kg/d) dry matter intake, ruminal pH, or total volatile fatty acids concentrations. Fat supplementation did not affect pasture neutral detergent fiber digestion. Milk production did not differ among treatments (19.9 kg/d) but 4% fat-corrected milk was lower for cows fed the PFat compared to cows fed the TMR (16.1 vs. 19.5 kg/d) primarily because of the lower milk fat percentage (2.56 vs. 3.91%). Milk protein concentration was higher for cows fed the TMR than those on both pasture treatments (3.70 vs. 3.45%). Milk from the cows fed the PCorn had a lower content of short- (11.9 vs. 10.4 g/100 g) and medium-chain (56.5 vs. 47.6 g/100 g) FA, and a higher C18:3 percentage (0.07 vs. 0.57 g/100 g) compared with TMR-fed. Cows fed the PFat had the lowest content of short- (8.85 g/100 g) and medium-chain (41.0 g/100 g) FA, and the highest of long-chain FA (51.4 g/100 g). The CLA content was higher for cows in PCorn treatment (1.12 g/100 g FA) compared with cows fed the TMR (0.41 g/100 g FA), whereas the cows fed the PFat had the highest content (1.91 g/100 g FA). Pasture-based diets increased the concentrations of long-chain unsaturated FA and CLA in milk fat. The partial replacement of corn grain by Ca salts of unsaturated FA in grazing cows accentuated these changes. However, those changes in milk FA composition were related to a depression in milk fat.  相似文献   

7.
The effects of grass dry matter (DM) allowance and dietary supplements of full fat rapeseeds on levels of cis-9,trans-11 octadecadienoic (CLA) acid in bovine milk were investigated. Grass allowance of 16 kg/(cow*day) resulted in reduced (p<0.05) milk fat CLA levels (3.91 mg CLA/g fat) compared to 20 kg/(cow*day) after 19 wk treatment. CLA levels increased in milk fat from cows on a high-rapeseed-supplemented diet (p<0.001) (1650 g/(cow*day) full fat rapeseed) compared to the control (pasture) and low rapeseed (p<0.01) (825 g/(cow*day) full fat rapeseed) supplemented diets. The variation in milk fat CLA levels among individual cows over both trials was 1.5–16 mg/g.  相似文献   

8.
Ruminant diet supplementation with sunflower oil (SO) and fish oil (FO) has been reported as a good strategy for enhancing some milk fat compounds such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids in dairy cows, but no information is available regarding dairy sheep. In this work, ewe diet was supplemented with FO, alone or in combination with SO, with the aim of improving milk nutritional value and evaluating its effect on animal performance. Sixty-four Assaf ewes in mid lactation, fed a high-concentrate diet, were distributed in 8 lots of 8 animals each and assigned to 4 treatments (2 lots/treatment): no lipid supplementation (control) or supplementation with 20 g of SO/kg (SO), 10 g of FO/kg (FO), or 20 g of SO plus 10 g of FO/kg (SOFO). Milk production and composition, including a complete fatty acid profile, were analyzed on d 0, 3, 7, 14, 21, and 28 of treatments. Supplementation with FO tended to reduce dry matter intake compared with the control treatment (−15%), and its use in combination with SO (SOFO) resulted in a significant decrease in milk yield as well (−13%). All lipid supplements reduced milk protein content, and FO also reduced milk fat content by up to 21% alone (FO) and 27% in combination with SO (SOFO). Although the mechanisms involved in FO-induced milk fat depression are not yet well established, the observed increase in some milk trans-FA that are putative inhibitors of milk fat synthesis, such as trans-9,cis-11 CLA, and the 63% decrease in C18:0 (consistent with the theory of reduced milk fat fluidity) may be involved. When compared with the control, lipid supplementation remarkably improved the milk content of rumenic acid (cis-9,trans-11 CLA; up to 4-fold increases with SO and SOFO diets), whereas FO-containing diets also increased milk n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (with mean contents of 0.29 and 0.38% of total fatty acids for SOFO and FO, respectively), and reduced the n-6:n-3 FA ratio to approximately half the control value. All lipid supplements resulted in high levels of some trans-FA, mainly trans-11 C18:1 (vaccenic acid) but also trans-10 C18:1.  相似文献   

9.
The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.  相似文献   

10.

ABSTRACT

In this study, we evaluated chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of cow and goat cheeses from Northwest Argentina. Similar chemical and fatty acid composition were determined in milk and cheese of both species. Palmitic, oleic and myristic acids were the most abundant fatty acids in dairy products. CLA level averaged 0.85 and 0.96 in milk and 0.76 and 1.04 g/100 g of fatty acids in cheese of cow and goat, respectively. Cis‐9,trans‐11 was the major isomer present in both species. Significant differences in CLA desaturase activity were observed, showing a value of 0.068 and 0.064 in milk, and 0.077 and 0.071 in cheese of cow and goats, respectively. Good nutritional properties were determined for cheeses of both species, which are fed on natural pasture during spring and summer seasons. Goat's cheese represents a higher source of CLA for human consumers than cow's cheese, offering from 156.6 to 222.6 mg/ 100 g of sample.

PRACTICAL APPLICATIONS

The present work shows the fatty acid composition and chemical characteristics of two fresh cheeses manufactured with cow and goat milk. Animals were fed on natural pasture during summer and spring seasons. It is known that pasture increases conjugated linoleic acid (CLA) concentration in milk fat, and the content in cheese is directly related to it. The CLA content of dairy products for the human consumers was analyzed, showing goat cheese with high polyunsaturated fatty acid content, including CLA. Cow and goat fresh cheese offer CLA as many ripening products of different countries, as cheddar or hard cheeses. Lipid composition of food is related to many illnesses, but some compounds are beneficial to human health. The main sources of CLA are milk and cheeses, and in Northwest of Argentina, no data are reported about it, where artisanal cheeses are consumed by the population. Therefore, the atherogenicity index was determined as well.  相似文献   

11.
The objective of this study was to assess the effect of dietary supplementation of cows on pasture with sunflower oil for conjugated linoleic acid (cis-9, trans-11 CLA) enrichment of milk, for the production of CLA-enriched cheese. A group of 40 autumn-calving dairy cows were assigned to either a control group (indoor feeding on grass silage ad libitum and 6 kg/d of a typical indoor concentrate) or an experimental group (on pasture, being fed 6 kg of a supplement containing 100 g/kg of sunflower oil per d). These diets were fed for 16 d, during which time milk was collected for pilot-scale hard cheese manufacture. The pasture-based diet with sunflower oil resulted in a significant effect on the milk fatty acid CLA content. The concentration of cis-9, trans-11 CLA in the milk produced from cows on this diet increased to 2.22 g/100 g of fatty acid methyl esters (FAME) after 14 d, compared with 0.46 g/100 g of FAME in milk produced on the control indoor diet. The content of cis-9, trans-11 CLA in the cheese manufactured from the indoor control milk was 0.78 g/100 g of FAME and that from the pasture-based sunflower oil milk was 1.93 g/100 g of FAME. The cheese was assessed during the ripening period and CLA concentrations were stable throughout the 6 mo of ripening. Other cheese variables (microbiology, composition, flavor, free AA) were monitored during the ripening period, and the cheese with the elevated CLA concentrations compared favorably with the control cheese. Thus, a pasture-based diet supplemented with an oil source rich in linoleic acid resulted in an enhanced CLA content of bovine milk fat, compared with an indoor grass silage-based diet.  相似文献   

12.
Supplementing a high dose of dietary conjugated linoleic acid (CLA) inhibits milk fat synthesis in dairy cows immediately postpartum. During negative net energy balance (EBAL), it appears that moderate CLA-induced milk fat depression causes a positive response in milk yield; however, as milk fat depression becomes more severe, the milk yield response diminishes. Multiparous Holstein cows (n = 31) were randomly assigned to 1 of 3 treatments beginning 9 ± 6 d before expected calving and ceased at 40 d in milk (DIM): 1) 578 g/d of a rumen-inert (RI) palm fatty acid distillate (control), 2) 600 g/d of RI-CLA for the entire trial period (CLA-1), and 3) 600 g/d of RI-CLA until 10 DIM followed by 200 g/d for the remainder of the trial (CLA-2). Each dose provided equal amounts of fatty acids by replacing and balancing each treatment with a RI palm fatty acid distillate. Doses provided a total of 522 g of fatty acids/d and 0, 174, or 58 (depending upon DIM) g of CLA (mixed isomers)/d. To improve palatability, doses were mixed with 600 g/d of dried molasses; one-half of the supplement was fed at 0800 h, and the remainder at 1900 h. Individual milk yield, dry matter intake, and body weight were recorded daily and milk composition determined every other day. There was no overall CLA effect on either the content or yield of milk protein or lactose. Both CLA treatments decreased overall milk fat content (26.0 and 18.3%) and yield (22.5 and 17.3%) with CLA-induced milk fat depression becoming significant by d 8. The CLA-induced milk fat depression increased in magnitude with progressing DIM until reaching a plateau on d 18 for CLA-1 (43%) and on d 14 for CLA-2 (33%), although neither milk fat trans-10, cis-12 CLA content (1.8 mg/g) nor its transfer efficiency (6.3%) changed over time. Treatments had no effect on overall dry matter intake or milk yield, but there was a treatment × time interaction for milk production, as cows fed either CLA treatment had increased milk yield after the second week of lactation. Cows fed either CLA treatment had a significant improvement in overall EBAL (−5.1 vs.-1.8 Mcal/d), a decrease in nonesterified fatty acid levels (12%), and an increase in glucose levels (11%). A dietary supplement containing trans-10, cis-12 CLA markedly improves EBAL and bioenergetic variables and increases milk yield in the total mixed ration-fed transitioning dairy cow.  相似文献   

13.
Diets inducing milk fat depression (MFD) are known to alter ruminal lipid metabolism, leading to the formation of specific isomers [such as trans-10,cis-12 conjugated linoleic acid (CLA)] that inhibit milk fat synthesis in lactating dairy cows. However, ruminal outflow of these isomers does not fully account for the decreases in milk fat synthesis observed during diet-induced MFD. The high-concentrate diets inducing MFD also induce a greater production of propionate, suggesting a possible inhibition of milk fat by propionate associated with trans-10,cis-12-CLA during MFD. The present experiment aimed to study the combined effects of propionate and trans-10,cis-12-CLA (both inhibitors of milk fat synthesis) on milk fat secretion and the effects of the combination of 2 nutrients with opposite effects (acetate and propionate). Six Holstein cows were used in a 6 × 6 Latin square design with 21-d periods (14 d of nutrient infusion). The treatments were control; ruminal infusion of 1,500 g/d of acetate (A); ruminal infusion of 800 g/d of propionate (P); duodenal infusion of 1.60 g/d of trans-10,cis-12-CLA (CLA); ruminal infusion of 750 g/d of acetate + 400 g/d of propionate (A+P); and duodenal infusion of 1.60 g/d of trans-10,cis-12-CLA + ruminal infusion of 800 g/d of propionate (CLA+P). The amounts of nutrients infused were chosen to induce a similar variation in milk fat content. Treatments A and P decreased dry matter intake. Compared with the control, P and CLA treatments decreased milk fat content and yield by 9% and 15% on average. Treatment A increased milk fat content by 6.5% but did not modify milk fat yield (because of a decrease in milk yield). The effects of A and P, and CLA and P on milk fat and fatty acid percentages and yield were additive (A+P and CLA+P treatments). With a same dose of trans-10,cis-12-CLA, the additional supply of propionate induced a decrease in milk fat 40% higher than that induced by trans-10,cis-12-CLA alone. The milk fatty acid profile obtained with CLA+P was similar to those observed with high-concentrate diets inducing MFD. In conclusion, under our experimental conditions, the effects of the 3 nutrients were additive on mammary lipogenesis, regardless of their separate effects. We also show that propionate could contribute to the milk fat reductions unaccounted for by trans-10,cis-12-CLA during MFD induced by high-concentrate diets.  相似文献   

14.
Two experiments were conducted to study the consumer acceptability attributes of conjugated linoleic acid (CLA)-enriched milk and cheese from cows grazing on pasture. In experiment 1, 15 cows were fed either a diet containing 51% alfalfa hay plus corn silage and 49% concentrate [total mixed ration (TMR)], were grazed on pasture, or were grazed on pasture and received 3.2 kg/d of a grain mix. The grain mix contained 75% full-fat extruded soybeans (FFES), 10% corn, 10% beet pulp, and 5% molasses. During the final 3 wk of the 6-wk experiment, milk was evaluated for sensory attributes. In experiment 2, 18 cows were fed similar diets as in experiment 1, except replacing the group of cows grazed on pasture and receiving the grain mix was a group of cows grazed on pasture and receiving 2.5 kg/d per cow of the FFES; Cheddar cheese was manufactured from milk. Average CLA contents (g/100 g of fatty acid methyl esters) were 0.52, 1.63, and 1.69 in milk and 0.47, 1.47, and 1.46 in cheese from cows fed a TMR, grazed on pasture, and grazed on pasture and fed the grain mix, respectively. An open and trained panel evaluated CLA-enriched milk for mouth-feel, color, flavor, and quality and evaluated cheese for color, flavor, texture, and quality. Open and trained panel evaluations of milk and cheese showed no differences among treatments for any of the attributes, except that the trained panel detected a more barny flavor in milk from cows grazing pasture compared with milk from cows fed the TMR only. Results suggest that consumer acceptability attributes of CLA-enriched milk and cheese from cows grazing pasture is similar to those of milk and cheese with low levels of CLA.  相似文献   

15.
Thirty-six Holstein cows were blocked by parity and allotted by stage of lactation to 6 treatments to evaluate the effects of dietary soy oil, conjugated linoleic acid (CLA; free acid or calcium salt), or both, on CLA content of milk. Diets were fed for 4 wk and are as follows: (1) control, (2) control + 5% soy oil, (3) control + 1% CLA, (4) control + 1% Ca(CLA)2, (5) control + 1% CLA + 4% soy oil, and (6) control + 1% Ca(CLA)2 + 4% soy oil. Rumen volatile fatty acid -concentrations, blood fatty acid concentrations, milk yield, and milk composition were measured weekly or biweekly. Dry matter intake and milk yield were recorded daily. Dietary supplementation of soy oil or CLA had no effect on daily milk yield, milk protein concentration and production, or milk lactose concentration and production. Supplementation of unsaturated fatty acids as soy oil, CLA, or Ca(CLA)2 increased total fatty acid concentration in plasma, decreased milk fat concentration and production, and had no effect on rumen volatile fatty acid concentrations. The weight percentage of CLA in milk was increased from 0.4 to 0.7% with supplementation of 1% CLA, to 1.2% with supplementation of soy oil, and to 1.3% with supplementation of 1% CLA plus soy oil. Supplementation with Ca(CLA)2 or Ca(CLA)2 + soy oil increased the CLA content of milk fat to 0.9 and 1.4%, respectively. In summary, adding 5% soy oil was as effective as supplementing CLA, Ca(CLA)2, or a combination of 1% CLA (free acid or calcium salt) + 4% soy oil at increasing CLA concentrations in milk fat. Feeding CLA as the calcium salt resulted in greater concentrations of CLA in milk fat than did feeding CLA as the free acid. Dietary supplementation of 5% soy oil or 4% soy oil + 1% CLA as the free acid or the calcium salt increased the yield of CLA in milk.  相似文献   

16.
New Zealand Holstein-Friesian cows (n = 4) were used to quantify the importance of endogenous synthesis of cis-9, trans-11 conjugated linoleic acid (CLA) via Delta(9)-desaturase in cows fed a fresh pasture diet. The experiment was a 4 x 4 Latin square design with treatments arranged in a 2 x 2 factorial. Treatments lasted 4 d and were pasture only, pasture plus sterculic oil, pasture plus sunflower oil, and pasture plus sunflower oil plus sterculic oil. Abomasal infusion of sterculic oil inhibited Delta(9)-desaturase and decreased the concentration of cis-9, trans-11 CLA in milk fat by 70%. Using the changes in cis-9 10:1, cis-9 12:1 and cis-9 14:1 to correct for incomplete inhibition of Delta(9)-desaturase, a minimum estimate of 91% of cis-9, trans-11 CLA in milk fat was produced endogenously in cows fed fresh pasture. Dietary supplementation of a pasture diet with sunflower oil increased the proportion of long chain fatty acids in milk fat; however, the increase in vaccenic acid concentration was small (18%) and there was no increase in cis-9, trans-11 CLA concentration. Overall, results show that endogenous synthesis is responsible for more than 91% of the cis-9, trans-11 CLA secreted in milk fat of cows fed fresh pasture. However, the failure of plant oil supplements to increase the concentration of cis-9, trans-11 CLA in milk fat from pasture-fed cows requires further investigation.  相似文献   

17.
Conjugated linoleic acid content of milk from cows fed different diets.   总被引:24,自引:0,他引:24  
Conjugated linoleic acid in milk was determined from cows fed different diets. In Experiment 1, cows were fed either normal or high oil corn and corn silage. Conjugated linoleic acid was 3.8 and 3.9 mg/g of milk fatty acids in normal and high oil treatments, respectively. In Experiment 2, cows consumed one-third, two-thirds, or their entire feed from a permanent pasture. Alfalfa hay and concentrates supplied the balance of feed for the one-third and two-third pasture treatments. Conjugated linoleic acid was 8.9, 14.3, and 22.1 mg/g of milk fatty acids in the one-third, two-third, and all pasture treatments, respectively. Cows grazing pasture and receiving no supplemental feed had 500% more conjugated linoleic acid in milk fat than cows fed typical dairy diets (Experiment 1). In Experiment 3, cows were fed either a control diet containing 55% alfalfa silage and 45% grain, or similar diets supplemented with 3% fish meal, or 250 g of monensin/cow/per day, or fish meal and monensin together. Conjugated linoleic acid was 5.3, 8.6, 6.8, and 8.9 mg/g of milk fatty acids in the control, fish meal, monensin, and fish meal plus monensin treatments, respectively. In Experiment 4, cows were fed either finely chopped alfalfa hay (Treatment 1), or coarsely chopped alfalfa hay (Treatment 2) in a 50% forage and 50% grain diet, or 66.6% grass hay and 33.4% grain (Treatment 3), or 98.2% grass hay (Treatment 4). Conjugated linoleic acid was 7.3, 8.3, 9.0, and 7.9 mg/g of milk fatty acids in treatments 1 through 4, respectively.  相似文献   

18.
Five multiparous Finnish Ayrshire cows fed red clover silage-based diets were used in a 5 × 5 Latin square with 21-d experimental periods to evaluate the effects of various plant oils or camelina expeller on animal performance and milk fatty acid composition. Treatments consisted of 5 concentrate supplements containing no additional lipid (control), or 29 g/kg of lipid from rapeseed oil (RO), sunflower-seed oil (SFO), camelina-seed oil (CO), or camelina expeller (CE). Cows were offered red clover silage ad libitum and 12 kg/d of experimental concentrates. Treatments had no effect on silage or total dry matter intake, whole-tract digestibility coefficients, milk yield, or milk composition. Plant oils in the diet decreased short- and medium-chain saturated fatty acid (6:0-16:0) concentrations, including odd- and branched-chain fatty acids and enhanced milk fat 18:0 and 18-carbon unsaturated fatty acid content. Increases in the relative proportions of cis 18:1, trans 18:1, nonconjugated 18:2, conjugated linoleic acid (CLA), and polyunsaturated fatty acids in milk fat were dependent on the fatty acid composition of oils in the diet. Rapeseed oil in the diet was associated with the enrichment of trans 18:1 (Δ4, 6, 7, 8, and 9), cis-9 18:1, and trans-7,cis-9 CLA, SFO resulted in the highest concentrations of trans-5, trans-10, and trans-11 18:1, Δ9,11 CLA, Δ10,12 CLA, and 18:2n-6, whereas CO enhanced trans-13-16 18:1, Δ11,15 18:2, Δ12,15 18:2, cis-9,trans-13 18:2, Δ11,13 CLA, Δ12,14 CLA, Δ13,15 CLA, Δ9,11,15 18:3, and 18:3n-3. Relative to CO, CE resulted in lower 18:0 and cis-9 18:1 concentrations and higher proportions of trans-10 18:1, trans-11 18:1, cis-9,trans-11 CLA, cis-9,trans-13 18:2, and trans-11,cis-15 18:2. Comparison of milk fat composition responses to CO and CE suggest that the biohydrogenation of unsaturated 18-carbon fatty acids to 18:0 in the rumen was less complete for camelina lipid supplied as an expeller than as free oil. In conclusion, moderate amounts of plant oils in diets based on red clover silage had no adverse effects on silage dry matter intake, nutrient digestion, or milk production, but altered milk fat composition, with changes characterized as a decrease in saturated fatty acids, an increase in trans fatty acids, and enrichment of specific unsaturated fatty acids depending on the fatty acid composition of lipid supplements.  相似文献   

19.
Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis. We examined the effect of low doses of trans-10, cis-12 CLA using Holstein cows in a 4 x 4 Latin square design. Milk yield and milk protein were unaffected, but abomasal infusion of 1.25, 2.5, and 5.0 g/d of trans-10, cis-12 CLA reduced milk fat yield by 7, 16, and 29%, respectively. When combined with previous data, the reduction in milk fat yield was curvilinear, relating to both quantity infused and milk fat content of trans-10, cis-12 CLA (R2 = 0.99 and 0.96, respectively). Further, changes in milk fatty acid composition indicated the mechanism involved inhibition of de novo fatty acid synthesis and the utilization of circulating fatty acids.  相似文献   

20.
The project objective was to determine the CLA content of three muscles (Longissimus lumborum, LD; Semimembranosus, SM; Triceps brachii, TB), in both raw and cooked states, in cattle finished on pasture or with grain supplements. Cattle were randomly assigned to one of four finishing regimens; pasture (n=11), pasture with grain supplement (n=11), pasture with grain supplement containing soyoil (n=12), and feedlot (n=12). In the raw state, TB had higher (P<0.05) CLA than LD or SM on a mg/g sample basis. Total CLA was higher (P<0.05) in the soyoil diet when compared to the other three feeding regimes on a mg/g sample basis and when expressed as mg/g fat in both raw and cooked analyses. Pasture inclusion produced higher levels (P<0.05) of total CLA than the feedlot diet on a mg/g fat basis for cooked samples while maintaining acceptable eating quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号