首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a simple procedure for the design of classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters. This procedure has already been applied to classical Cassegrain and Gregorian antennas, to classical displaced-axis Cassegrain and Gregorian antennas, and to classical offset Dragonian antennas. The antenna systems can be fully characterized by 21 parameters, of which only five need to be provided by the antenna designer, as the remaining 16 parameters can be derived in closed form using the procedure described here. In this paper, we assume that the main reflector has a circular aperture, while the subreflector has an elliptical aperture All the antenna geometries presented satisfy the Mizugutch condition (1976), which is the geometric-optics condition for zero cross-polarized radiation. This procedure is very close to the one used for offset Dragonian systems, but all the relevant information is repeated here for completeness.  相似文献   

2.
The vector aperture field of classical offset Dragonian dual-reflector antennas is derived using geometrical-optics concepts. This field then yields the equivalent paraboloid of the geometry. From these results, the conditions for an axially symmetric equivalent paraboloid, when a circular aperture is assumed, are obtained. A complete step-by-step geometrical-optics-based design procedure for optimum classical offset Dragonian antennas with circular apertures is then presented (i.e., zero geometrical-optics cross-polarization and minimum spillover). This procedure is demonstrated by two design examples.  相似文献   

3.
The paper provides a tutorial review of a number of offset parabolic reflector configurations including both single and double-reflector geometries. The author commences by describing some basic techniques which can be applied to predict the vector radiation fields and provides some indication of the validity of these methods. The formulation of a relatively simple analytical model for the offset reflector antenna is described based upon the physical-optics approximation. The electrical performance of the single-offset reflector is examined by comparison of predicted and measured data. The particular problems arising from the choice of polarisation and reflector dimensions are highlighted, and some practical applications involving multiplebeams, shaped and contoured beams, monopulse tracking and low sidelobes are briefly reviewed. Practical primary-feeds for offset-reflector antennas are discussed and the matched-feed concept is outlined, the matching of the electric fields in the primary-feed aperture to the reflector focal fields being illustrated. The advantages and disadvantages of dual-reflector antennas are then examined, with particular emphasis upon the open Cassegrainian configuration and the optimised doubleoffset configuration which offers, in principle, both freedom from blockage and low levels of cross-polarised radiation.  相似文献   

4.
The radiation characteristics of dual parabolic cylindrical antennas are studied, and the dependence of the principal plane beamwidths and the peak cross-polarization on their geometrical parameters is determined. The antenna aperture is rectangular in shape and generates an elliptical beam pattern, with a beamwidth ratio that can be controlled by the main and subreflector focal lengths. The far-field patterns are determined by an extended aperture integration method that includes the contributions of the reflected and the main diffracted rays. It is found that the cross-polarization depends of the offset angle between the axis and the direction of the normal to the subreflector surface and can be minimized by optimizing the relative angle between the reflectors. Other pattern characteristics are controlled by the antenna geometrical parameters and the feed illumination. A procedure for the design of these antennas and the expressions for determining the reflector geometries are provided  相似文献   

5.
This paper proposes a simple procedure for the design of classical offset-Dragonian dual-reflector antennas from combinations of prescribed geometric parameters. This procedure has already been applied to classical Cassegrain and Gregorian antennas, and to classical displaced-axis Cassegrain and Gregorian antennas. We provide a list of 20 parameters from which the antenna system is fully characterized, but only five of these parameters need to be provided by the antenna designer, as the remaining 15 parameters can be derived in closed-form using the procedure described. We consider that the main reflector (MR) has a circular aperture, while the subreflector (SR) has an elliptical aperture  相似文献   

6.
The aim of this work is to discuss the synthesis and performance of classical dual-reflector antennas suited for an omnidirectional coverage. The reflector arrangements are axially symmetric with surfaces of revolution generated by axis-displaced conic sections, established from geometrical-optics (GO) standpoints to achieve omnidirectional radiation characteristics. Closed-form equations are derived for the design of all possible reflector configurations. The vector GO aperture field is also obtained, yielding an approximate analysis by the aperture method. Some pertinent geometrical characteristics and efficiency curves are then presented and discussed for several antenna configurations fed by transverse electromagnetic coaxial horns (for vertical polarization). A practical antenna design is conducted and analyzed by the method-of-moments technique, demonstrating the accuracy of the efficiency analysis yield by the aperture method for moderately large antenna apertures.  相似文献   

7.
Cross-polarization in satellite and earth-station antennas   总被引:1,自引:0,他引:1  
Cross-plarization in axially symmetric reflector antennas can be reduced, theoretically, to zero by use of special feeds like the Huygens' source. Alternatively, paraboloidal reflectors with large f/D ratio do not deteriorate further the cross polarization level relative to the value due to the feed itself. The Cassegrainian optics is equivalent to a large f/D paraboloid. The reflector of linearly polarized off set fed antennas contribute more cross-polarization than symmetrical reflectors fed by the same feed. With symmetrical reflectors the cross-polarized component generated by the reflector vanishes in the principal planes and is confined to four main lobes that have peak values in planes at 45° to the principal planes. In the case of offset fed reflectors cross-polarization vanishes in the plane of symmetry and has its peak in the plane of asymmetry. The reflector generated cross-polarization with offset fed antennas may be reduced by use of small offset angles and large f/D ratios. Feed offsetting has but little effect on the peak level of cross-polarization. This is usually accompanied with an asymmetry in the cross-polarization radiation pattern. Feed offsetting also results in spatial tilt in the copolarized and cross-polarized lobes with the cross-polar minimum always coinciding with the main beam peak. The effect of surface errors on the antenna cross-polarization is to partly fill the cross-polar along boresight. The peak cross-polarization, however, changes but slightly.  相似文献   

8.
A procedure to design axially symmetric Cassegrain or Gregorian dual-reflector antennas from various combinations of prescribed geometric parameters is presented. From these input parameters, the overall geometry of the antenna is derived in closed form. This procedure can be used as the starting point of a synthesis procedure, where both main reflector and subreflector are shaped to create the desired aperture field distribution  相似文献   

9.
The pattern characteristics of elliptical reflector antennas are investigated when they are fed by rectangular and elliptical horns partially filled with a dielectric. The bandwidth characteristics of these dielcore horns are superior to those of their corrugated horn counterparts. Representative reflector patterns are computed to properly demonstrate the utility of these feeds for reflector antennas with elliptical apertures. This reflector antenna exhibits high efficiency and low cross polarization, and may be suitable for radar and satellite antenna applications. The antenna configuration may become useful in relatively small antennas where more than 10% cross-polar bandwidth is required. The efficient dielcore horns may also be used as feeds for elliptical nonshaped dual-reflector antennas  相似文献   

10.
A synthesizing procedure for shaping dual-reflector offset antennas is described. The synthesis is based on geometrical optics and near-field measurements of amplitude and phase from the feed element. The procedure preserves good symmetry in mapping from feed to aperture which results in minimal distortions of the electrical characteristics of the antenna. A 1.8 m antenna has been manufactured and measured at 12 GHz. The radiation pattern is characterized by low sidelobes and cross polarization introduced by the offset geometry below -50 dB.  相似文献   

11.
Many existing large ground reflector antennas have been designed as Cassegrain systems-i.e., paraboloid/hyperboloid combinations. Other large ground antennas are simply paraboloid designs. Upgrading the gain of these systems to a gain comparable to that obtainable with a dual shaped reflector antenna system has been an important and costly objective of many such ground stations. A potentially economic method for such an antenna upgrade is presented herein. It involves a redesign of only the subreflector portion of a Cassegrain antenna or the introduction of a subreflector feed system for a parabaloid. A pair of offset subreflectors are synthesized which will give a controllable high gain amplitude distribution in the aperture of the large paraboloid. The synthesis method that is used is based on an approximate formulation for an offset dual shaped high gain antenna that was first presented by Galindo-Israel and Mittra in 1977. In that approximate formulation, the geometrical optics (GO) energy was scattered from a subreflector and then from a second large reflector which reflected a uniform phase distribution. In the present offset dual shaped subreflector (DSS) antenna, the second reflection is from a smaller (sub) reflector and it scatters a spherical wave that feeds a hyperboloid or feeds a large paraboloid directly. Excellent results are shown for the approximate synthesis of the DSS.  相似文献   

12.
The design of dual-reflector antennas with a spherical main reflector for small earth stations is considered. An analysis of the field polarization throughout the system shows that it is possible to adjust the reflectors to obtain very low cross-polarization. The use of an elliptical main reflector projection is explored in order to enhance efficiency and lower side-lobe levels  相似文献   

13.
Offset reflector antennas have advantages for communication systems because they are not severely subject to blocking. Difficulties mainly arising from structual asymmetries have inhibited the realization of an offset reflector antenna with a large aperture for commercial use. This paper describes the design of an offset Cassegrain earth station antenna for the Japanese domestic satellite communication system. Antenna measurements showed 76 and 69 percent aperture efficiencies at 20 and 30 GHz, respectively, less than -20 dBi wide angle directivity and an 18 K noise temperature in operating conditions. Performances are far superior to conventional axisymmetrical earth station antennas. The antenna was reassembled on a telephone office building after the measurements. The antenna gain was reconfirmed there, using the sun as a radio frequency source. Experiments show that the earth station antenna and a terrestrial antenna can be placed on the same building without serious interference.  相似文献   

14.
In this paper the electric field in the aperture of offset front-fed paraboloid antennas and open Cassegrainian antennas, excited by an electric dipole or Huygens source in the focus, is compared with the fields of front-fed circularly symmetrical paraboloid reflector antennas and classical Cassegrainian antennas. The aperture field forms the basis of expressions to calculate the polarization efficiency of all four types of antenna. Computed results are given, showing that offset antennas can compete with front-fed paraboloids if they are excited by an electric dipole; the classical Cassegrainian antenna, however, shows better results. If offset antennas are excited by a Huygens source, the result is very unfavorable compared with the symmetrical antennas which show no cross polarization.  相似文献   

15.
The program presented in this paper is intended to provide a valuable aid for teaching antennas to electrical engineers, and to provide fast and accurate pre-designs for professionals. This paper covers the theory and numerical techniques used in SABOR. In summary, this program computes the radiated field of an aperture antenna (horn or reflector), using a common engine based on the Gauss-Legendre quadrature method for evaluating the radiation integrals. For horn, the aperture fields are the usual dominant modes of the feed waveguide, with a quadratic phase correction. For reflectors, the aperture fields are computed using geometrical optics ray tracing from the feed horn. Also, equivalent-reflector concepts are applied for dual-reflector antennas. The paper includes some examples to demonstrate the most important features of the program  相似文献   

16.
An offset impulse-radiating antenna (IRA) is numerically analyzed and compared with a typical centered IRA. In the typical centered IRA, the transverse electromagnetic (TEM) feed arms block the aperture because they are located at the center of the aperture. This blockage causes multiple reflections inside the antenna and, thus, ripples in the tail of the radiated waveform. In the offset IRA, the TEM feed arms are removed from the aperture, lowering the tail ripples caused by multiple reflections between the TEM feed arms and the reflector. The boresight gains and the impulse amplitudes are seen to be essentially the same for both IRAs. The monostatic radar cross section of the offset IRA is significantly lower than that of the centered IRA for the plane wave incident from the boresight direction because the wave incident to the offset IRA is diverted toward the focal point of the reflector, which is away from the boresight direction. The offset IRA has a shadow behind the reflector. This feature can be useful in bistatic radar applications because the antennas can be placed in the shadows of each other.  相似文献   

17.
Two variations of an integratable coplanar waveguide fed aperture stacked patch antenna are presented, which are capable of generating wideband dual polarized radiation. One of the antennas displays the desired characteristics for reducing polarization loss between an antenna remote unit (ARU) and mobile units at arbitrary angles. The other has a dual input structure and low cross-polarization useful for polarization diversity applications, or it can also produce circular polarization with the addition of a 90/spl deg/ hybrid. Back radiation concerns are addressed with the use of reflector patch elements. Results indicate that the rear directed radiation of the two slot coupled printed antennas mounted on small ground planes can be reduced across a wide bandwidth with the addition of a reflector element.  相似文献   

18.
The effects of the spherical wave blockage in reflector antennas is investigated. This problem is likely to occur in axially symmetrical feed antennas of single- and dual-reflector type in both single- and dual-reflector configurations, owing to the presence of primary feeds and their supports including struts that are normally placed between the primary source and the main reflector. The main reflector blockage due to large obstacles is estimated by the well-known null-field technique that employs flat polygonal plate models of the masking structures to define the obscured area. Although this same approach may be used to predict the spherical wave blockage due to the struts, a more rigorous but yet efficient technique is also employed, which consists of superimposing to the primary field the high-frequency scattered field from the struts. This field is calculated by using scattering coefficients that are derived by locally approximating the actual structure, by an infinite circular cylinder. This latter formulation is compared with the null-field technique and validated by an experimental campaign. The measurement setup is particularly useful for isolating spherical wave-blockage effects. It consists of a single-reflector offset antenna where a single strut is mounted with its axis parallel to that of the focusing parabola, thus, practically enforcing the plane wave blockage to vanish. Comparisons with the measurements have shown that the null-field approach is adequate for predicting the secondary pattern for large polygonal obstacle, but it is unsatisfactory to treat the strut blockage. It is found that this latter can be successfully described with the more rigorous high-frequency approach  相似文献   

19.
This work presents a generalized study of classical axially symmetric dual-reflector antennas. The antenna dishes are simply described by conic sections, arranged to reduce the main-reflector radiation toward the subreflector surface. The dual-reflector configuration provides a uniform-phase field distribution over the illuminated portion of the aperture, starting from a spherical-wave feed source at the antenna primary focus. All possible configurations are characterized into a total of four distinct groups. Simple closed-form design equations and the aperture field distribution are derived, in a unified way, for all these kinds of generalized antennas using the principles of geometrical optics. The formulation is applied in a parametric study to establish the configurations yielding maximum radiation efficiency (not including diffraction effects). The design procedure is exemplified in the synthesis of a novel configuration, which is further analyzed by the moment method  相似文献   

20.
A technique for tracing rays and fields with several numerically specified reflectors by using geometrical optics (GO) is described. The ray paths are determined by launching individual rays from the feed point and following them by reflection from all the reflector surfaces to the output aperture of the last reflector. This procedure is referred to as kinematic ray tracing. Thereafter, the amplitude, phase and polarization of the E-field is traced along the ray paths to the aperture; this is referred to as dynamic ray tracing. The aperture field is then integrated to find the aperture efficiency, which is factorized into convenient subefficiencies. The technique has been implemented in a computer code that has been used to analyze the proposed new shaped-offset dual-reflector feed for the spherical reflector antenna at the Arecibo Observatory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号