首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以多官能度聚酯二元醇为软段、HBP(端羟基超支化聚酯)为改性交联剂、IPDI(异佛尔酮二异氰酸酯)和DMPA(二羟甲基丙酸)为硬段,采用原位聚合法制备出稳定的HBPU(超支化水性聚氨酯分散液),并对其结构和性能进行了分析。研究结果表明:经羟基比率为1∶6的HBP改性后,相应HBPU的表面张力降低,说明其对非极性基材的浸润性增强;由于WPU(水性聚氨酯)大分子链之间形成了交联网状结构,故HBPU胶膜的力学性能、硬度和热性能等得到明显改善。  相似文献   

2.
采用HDI三聚体(HDT)和二乙醇胺(DEOA)自制六羟基多元醇;采用异佛尔酮二异氰酸酯(IPDI)、全氟己基乙基醇(TEOH-6)和三羟甲基丙烷(TMP)自制含氟二元醇;以IPDI、聚碳酸酯二元醇(PCDL)、含氟二元醇、二羟甲基丁酸(DMBA)、季戊四醇三丙烯酸酯(PETA)为主要原料合成—NCO半封端的聚氨酯,将六羟基多元醇加入到聚氨酯中,制备了氟改性UV固化超支化水性聚氨酯(FWPU)。采用光学接触角、纳米粒度仪、电子拉力机、原子力显微镜等对涂膜的结构与性能进行了测试。研究了含氟二元醇添加量对涂膜疏水性、力学性能、硬度、热稳定性等的影响。结果表明:随着含氟二元醇的加入,乳液粒径逐渐增大、分布变宽,涂膜接触角增加、吸水率大幅降低、热稳定性增强、拉伸强度大幅度增大、硬度达到4H。当含氟二元醇含量为8%时,涂膜的综合性能最佳。  相似文献   

3.
采用异佛尔酮二异氰酸酯(IPDI)、聚丙二醇(PPG-2000)和PPG-纳米SiO_2溶胶为原料合成聚氨酯预聚体,用2,2-二羟甲基丙酸(DMPA)作亲水扩链剂并用1,4-丁二醇(BDO)、三羟甲基丙烷(TMP)作小分子扩链剂进一步提高相对分子质量,再用乙酸酐封端的超支化水性聚氨酯(AWHBPU)进行共混改性,采用内乳化法制备了超支化水性聚氨酯共混改性纳米SiO_2水性聚氨酯。研究了超支化水性聚氨酯共混改性纳米SiO_2水性聚氨酯乳液的粒径及稳定性、黏度以及胶膜的热性能和力学性能。结果表明,AWHBPU含量4%的乳液体系较稳定;随着AWHBPU的引入,乳液黏度先减小后增大,当AWHBPU添加量为4%时,乳液黏度最小为66.55 mPa·s;当AWHBPU添加量为6%时,试样的最大拉伸强度可达到18.92MPa。  相似文献   

4.
以4,4’-(4,4’-异丙基二苯氧基)双(邻苯二甲酸酐)(BPADA)与4,4’-二氨基二苯醚(ODA)为原料制备了端基为氨基的线型聚酰亚胺(PI)。以甲苯二异氰酸酯(TDI)、聚碳酸酯二醇(PCDL)、2,2’-二羟甲基丙酸(DMPA)、聚酰亚胺(PI)为原料制备了聚酰亚胺改性水性超支化聚氨酯(WHBPU-PI)。利用红外光谱(FT-IR)、热重分析法(TGA)、差示扫描量仪(DSC)、粒径分析(PCS)、稳定性测试、吸水率试验、力学测试等表征了WHBPU-PI的结构与性能。研究结果表明:合成的WHBPU-PI具有良好的贮存稳定性、耐水性、耐热性及力学性能;PI的引入使得WHBPU的热力学性能和耐水性均显著提高。  相似文献   

5.
以顺丁烯二酸酐改性的超支化聚酯Boltorn H20、聚四氢呋喃2000和异佛尔酮二异氰酸酯为主要原料合成了超支化水性聚氨酯乳液,研究了改性超支化聚酯Boltorn H20的合成,以及改性超支化聚酯中羧基含量、初聚—NCO/—OH物质的量比、催化剂用量等对制备水性聚氨酯的影响,并探讨了亲水基团含量、乳化温度、中和度等因素对乳液及涂膜性能的影响,进一步使用傅里叶红外和热重分析分别对超支化聚氨酯涂膜的结构和热稳定性能进行了表征及测试。结果表明,在不加催化剂,初聚—NCO/—OH物质的量比为2∶1,亲水基团含量为2.05%的条件下,合成得到的含固量为30%的超支化水性聚氨酯乳液稳定性好。由此得到的超支化聚氨酯薄膜的耐水性和热稳定性较好。  相似文献   

6.
采用全氟聚醚(PFPE)、异氟尔酮二异氰酸酯(IPDI)、甲基丙烯酸羟乙酯(HEMA)、超支化聚酯(H302)等制备了含氟超支化聚氨酯丙烯酸酯低聚物(HFUA),并通过FTIR(傅里叶红外光谱)表征了其结构。讨论了HFUA改性比例、含氟超支化聚合物用量和主体树脂种类对UV固化涂层的水/油接触角、吸水率、力学性能的影响。  相似文献   

7.
采用八氟戊醇(F8)改性水性聚氨酯,制备了含氟水性聚氨酯(FWPU),并且通过红外光谱对FWPU的结构进行了表征。研究了F8含量对FWPU乳液及其涂膜的影响。研究表明,F8的加入,明显提高了涂膜的耐水性能。当F8含量为8%时,涂膜的吸水率从未改性的12.2%减少到3.1%,接触角从80°提高到108°。乳液粒径先增大后减少,当F8含量为4%时,乳液粒径最大,达到157 nm。TGA测试结果表明,改性后的FWPU涂膜热稳定性有所提高。  相似文献   

8.
以聚环氧丙烷二醇醚(PPG1000)、季戊四醇、2,2-二羟甲基丙酸(DMPA)和异佛尔酮二异氛酸酯(IPDI)为主要聚合单体,甲基丙烯酸羚乙酯(HEMA)为封端剂,合成了超支化紫外光固化水性聚氨醋树脂.研究了各组分用量对涂膜性能的影响,确定了较佳工艺条件,并用红外光谱和核磁共振谱对该超支化聚氨醋树脂的结构进行了表征....  相似文献   

9.
以季戊四醇为核,丙烯酸甲酯和二乙醇胺的加成产物为单体合成了端羟基超支化聚(胺-酯),将其接枝到端-NCO的聚氨酯预聚体上得到了超支化的水性聚氨酯羟基组分。探讨了温度和时间对羟基组分中-NC0含量的影响,采用化学滴定、红外光谱(FTIR)等方法对产物进行了表征和分析。结果表明:适宜的反应温度为75℃,反应时间为6h;以DesmodurDN作固化剂可以制得性能良好的漆膜。漆膜附着力可达到1级,耐冲击强度50cm,铅笔硬度3H,耐水性24h无变化。  相似文献   

10.
超支化聚合物是一种具有低黏度、多反应活性官能团的材料,适合作为反应性树脂,特别是水性聚氨酯树脂及其它树脂的改性。由于其黏度小,末端官能团多,可通过物理共混或化学聚合改善某些树脂的性能,以获得更优越的膜性能。所以发展超支化的水性聚氨酯也是水性聚氨酯的发展方向之一。本文合成了超支化水性聚氨酯,对产品进行了溶解性,分子量和支化度的测试,研究了产品的涂膜方面性能。  相似文献   

11.
采用聚己二酸-1,4-丁二醇酯二醇和异佛尔酮二异氰酸酯为基本单体,全氟烷基乙基丙烯酸酯为改性剂,2,2-双羟甲基丙酸(DMPA)为乳化剂,采用共聚改性法制备了一系列水性聚氨酯乳液。考察了合成条件对乳液黏度、粒径及其胶膜的附着力、吸水率的影响,得到最优合成条件为:生成预聚体阶段的最佳反应温度和反应时间分别为80°C和3 h,DMPA质量分数为3.3%,全氟烷基乙基丙烯酸酯质量分数为10.0%。所得胶膜的吸水率为14.61%,比改性前降低了2.2个百分点,耐水性较2种市售水性聚氨酯胶膜好很多。  相似文献   

12.
含氟化合物改性超支化聚合物及其性能研究   总被引:4,自引:1,他引:3  
用六氢苯酐(HHPA)与三氟乙醇(TFE)合成了含氟化合物,并将合成的含氟酸(FAD)按不同的比例接枝到超支化聚酯H30上,得到了改性的超支化聚合物(HPF).采用IR、DSC和化学滴定等方法对产物进行了表征和分析.实验表明改性超支化聚合物的玻璃化温度为-19℃;其聚合物溶液具有高固低黏的特性,树脂具有良好的成膜性和物理性能,氟含量越高漆膜的疏水性越好.  相似文献   

13.
加核型超支化水性聚氨酯的制备与表征   总被引:1,自引:0,他引:1  
以异佛尔酮二畀氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、二乙醇胺(DEA)为反应单体和三聚氰胺为核分子合成了一种新型超支化水性聚氨酯。采用红外光谱对产物的结构进行了表征,用多检测器凝胶渗透色谱(GPC)对其相对分子质量进行了测定,并用差示扫描量热仪对其热性能进行了测试。结果表明,合成得到的超支化水性聚氨酯水溶性良好,同时随着反应时间的延长,产物玻璃化温度逐渐提高。  相似文献   

14.
采用聚四氢呋喃二醇(PTMG)、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)等为主要原料,甲基丙烯酸羟乙酯(HEMA)为接枝剂,全氟辛基乙基丙烯酸酯(FA)为改性剂,合成了一系列含氟丙烯酸酯改性的水性聚氨酯乳液(WPUFA),并干燥成膜。考察了FA用量对WPU/WPUFA乳液及涂膜性能的影响,并采用红外光谱(FT-IR)、接触角、力学性能和热重分析(TGA)等手段对其进行表征。结果表明,FA成功接入到水性聚氨酯分子链中;随着FA含量增加,乳液粒径增大,胶膜接触角变大,吸水率变小,拉伸强度变大,断裂伸长率变小;FA的引入使胶膜耐热性能变好,当FA在胶膜中的质量分数为40%时,胶膜的综合性能最佳。  相似文献   

15.
以双酚A(BPA)和苯膦酰二氯(BPOD)为原料,合成了一种含磷阻燃单体双(双酚A)单苯基膦酸酯(BPAMPP),并以其作为扩链剂与聚氧化丙烯二醇(PPG)和异佛尔酮二异氰酸酯反应(IPDI)制备了阻燃水性聚氨酯(WPUP)。采用NMR和FTIR对BPAMPP结构进行了表征,通过粒径分析、拉伸测试、TGA、极限氧指数测试和锥形量热仪测试研究了WPUP的乳液性能、力学性能、热性能和阻燃性能。结果表明,BPAMPP被成功的合成,且在800℃下残炭的质量分数为14.2%;WPUP乳液都具备良好的粒径分布和贮存稳定性,当BPAMPP质量分数为8 %(占原料的总质量)时,水性聚氨酯膜的综合性能最佳,拉伸强度为36.8MPa,5%质量分数的热失重温度为288.3℃,极限氧指数(LOI)、峰值放热速(PHRR)和总释放热(THR)分别为26.8%、631 kW/m2和76 MJ/m2。  相似文献   

16.
以自制单体6[N-氨乙基-2,2'-二羟甲基丙酰胺]、甲苯-2,4-二异氰酸酯(TDI)和2,2'-二羟甲基丙酸(DMPA)为主要原料,采用准一步法制备了新型WHBPU(水性超支化聚氨酯);然后以此为基体,通过接枝活性稀释剂(羟乙基丙烯酸酯)引入了光活性基团,制备出一种可UV(紫外光)固化的WHBPU涂料。研究结果表明:以固化速率为考核指标,采用单因素试验法优选出制备WHBPU涂料的最佳工艺条件是冰盐浴(-5℃)反应时间为2.0 h、油浴温度为60℃、油浴时间为2.0 h、w(活性稀释剂)=20%(相对于WHBPU乳液质量而言)、w(光引发剂)=3%(相对于干固乳液质量而言)和干燥条件为室温(25℃)干燥2 h→50℃干燥2 h;此时,胶膜的固化速率相对较快、凝胶含量相对最大。  相似文献   

17.
纳米改性水性聚氨酯的制备与性能研究   总被引:1,自引:0,他引:1  
对纳米SiO2和TiO2进行了TDI(HDI)和PEG的接枝改性,并采用共混法制备了纳米改性水性聚氨酯乳液,电镜观测表明改性后的纳米粒子在乳液中分散均匀,无团聚现象。纳米粒子改性后的水性聚氨酯乳液力学性能比未改性前得到改善和提高,纳米粒子添加量为0.5%时,水性聚氨酯乳液的力学性能最佳,同时吸水率降低了70%,添加的纳米粒子对290~400 nm的紫外光有吸收。  相似文献   

18.
以异氟尔酮二异氰酸酯(IPDI)、聚四氢呋喃醚二醇(PTMG)以及二羟基甲基丙酸(DMPA)为主要原料合成水性聚氨酯(WPU)预聚体,在此基础上加入环氧树脂(EP,E-44)制备了环氧树脂改性水性聚氨酯(PUE)复合乳液。探讨了不同环氧树脂含量对复合乳液性能的影响,并对胶膜的力学性能、吸水率、接触角和热性能等进行了表征。结果表明,适量的环氧树脂改性过后的复合乳液比较稳定;随着环氧树脂含量的增加,乳液粒径和黏度增大,同时胶膜的拉伸强度增大,水的接触角增大,胶膜的热稳定性增加。E-44质量分数为7%~9%时,复合乳液及其胶膜的综合性能较好。  相似文献   

19.
采用超支化聚酯Boltorn H 20与丁二酸酐反应,制备了亲水性超支化聚酯,然后与甲基丙烯酸酯基改性的聚醚基聚氨酯预聚体和3-异氰酸酯基丙基三乙氧基硅烷(IPTS)反应,合成了有机硅烷偶联剂改性紫外光固化聚醚基超支化水性聚氨酯(WHPU)。考察了有机硅烷偶联剂用量对WHPU的耐酸性、固化时间、凝胶质量分数、附着力、水接触角、水吸附率、乳液粒径分布及热稳定性的影响。结果表明,当IPTS与Boltorn H 20中羟基的摩尔比为6/16时,固化后的WHPU膜的凝胶质量分数为92%,在玻璃表面的附着力达到0级;与不含有机硅烷偶联剂的WHPU相比,该涂膜的水接触角和热稳定性分别提高了34°和22℃,其吸水率从13.8%降低到4.3%。  相似文献   

20.
以氨基硅油(ASO)、聚己内酯二醇(PCL)和异佛尔酮二异氰酸酯(IPDI)为主要原料,2,2-双(羟甲基)丙酸(DMPA)、1,4-丁二醇(BDO)为扩链剂,水合肼为后扩链剂制得ASO改性的水性聚氨酯(Si-WPU)乳液,进一步成膜处理制得Si-WPU膜。采用FTIR、接触角测量仪、TEM、TGA和纳米粒度表面电位分析仪考察了Si-WPU膜的化学结构、疏水性、胶粒形态、热性能以及(Si-WPU)乳液的粒径大小;探究了ASO加入量、异氰酸酯指数(R,预聚物合成过程中NCO与活性基团的物质的量比)对Si-WPU膜力学性能和光泽度的影响。结果表明:当ASO加入量为15%(以PCL的质量为基准),R=1.6时,Si-WPU膜拉伸强度达到最大值(25.9MPa)。当R=1.6时,随着ASO加入量的增加,粒径从35.7nm逐渐增大到134.3nm;Si-WPU膜的力学性能下降,光泽度降低;热分解温度从186.2℃左右开始快速分解,428.4℃时基本分解完全,残重随着ASO加入量的增加逐渐增加;Si-WPU膜与水的接触角从ASO加入量为0时的81.8。逐渐增大到ASO加入量为15%时的107.0。,疏水性增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号