首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
姚路路  叶辉  宋影  崔鹏 《化工学报》2016,67(Z1):289-295
以聚己二酸1,4-丁二醇酯二醇(PBA-2000)和甲苯二异氰酸酯(TDI)为主要原料合成水性聚氨酯膜,并对苯/环己烷混合液渗透蒸发性能进行测试,讨论了苯/环己烷混合体系的渗透蒸发分离过程特点。结果表明,当膜厚度增大时,分离因子提高而渗透通量随之下降,这个变化趋势在膜较薄时很明显,达到一定厚度后则变化比较平缓;膜下游侧真空度提高会同时提高膜的分离因子和通量;增大料液中苯的浓度,提高料液温度会提高通量并降低分离因子。液体被分离组分在渗透蒸发膜中经历了吸附溶胀-膜内汽化-气体扩散的质量传递过程,“干区”对分离的影响作用更加显著。  相似文献   

2.
以聚己二酸1,4-丁二醇酯二醇(PBA-2000)和甲苯二异氰酸酯(TDI)为主要原料合成水性聚氨酯膜,并对苯/环己烷混合液渗透蒸发性能进行测试,讨论了苯/环己烷混合体系的渗透蒸发分离过程特点。结果表明,当膜厚度增大时,分离因子提高而渗透通量随之下降,这个变化趋势在膜较薄时很明显,达到一定厚度后则变化比较平缓;膜下游侧真空度提高会同时提高膜的分离因子和通量;增大料液中苯的浓度,提高料液温度会提高通量并降低分离因子。液体被分离组分在渗透蒸发膜中经历了吸附溶胀—膜内汽化—气体扩散的质量传递过程,"干区"对分离的影响作用更加显著。  相似文献   

3.
渗透蒸发过程脱除水溶液中挥发性有机物的研究   总被引:1,自引:0,他引:1  
姜忠义  徐海全  刘家祺 《化学工程》2002,30(2):49-52,74
采用自制的PDMS膜研究了从VOCs (挥发性有机化合物 )稀水溶液中脱除VOCs的渗透蒸发过程。以分离因子和渗透通量为评价指标 ,考察了料液浓度、温度和流动状况以及膜下游压力对膜的渗透蒸发分离性能的影响 ;并研究了针对脱除水溶液中VOCs的渗透蒸发过程的传质模型。  相似文献   

4.
采用2种不同配方制备出苯基含量不同的聚甲基双苯基硅氧烷(PMPhS)膜并用于分离苯-水体系。接触角测定结果表明2种膜比PDMS膜亲苯疏水性增强。以渗透通量和分离因子为评价指标,研究了原料液温度、流动状况、质量分数、膜下游侧压力对渗透蒸发分离性能的影响,结果表明,随着原料液温度、流速以及料液浓度的提高,通量和分离因子都增加,随着下游侧压力的升高,通量和分离因子均降低。  相似文献   

5.
二元水溶液在渗透蒸发膜中的传质模型   总被引:1,自引:0,他引:1  
对二元水溶液在渗透蒸发膜中的传质过程进行了研究,基于Flory Huggins高分子热力学理论和Fujita自由体积理论建立了改进的溶解 扩散模型。在该模型中考虑了组分间相互作用,组分体积分数、温度、膜材料和渗透物特性对传质过程的影响,考察了组分体积分数对相互作用参数的影响,膜材料对水的溶解选择性的影响,原料液组分体积分数、操作温度以及膜厚对渗透通量和分离因子的影响。  相似文献   

6.
聚环糊精填充PDMS渗透蒸发膜分离苯酚水溶液   总被引:4,自引:1,他引:3       下载免费PDF全文
方志平  姜忠义 《化工学报》2006,57(4):843-848
以聚二甲基硅烷为预聚体,正硅酸乙酯为交联剂,二丁基二月桂酸锡为催化剂,三氯甲烷或正庚烷为溶剂,通过相转化法制备得到了空白聚二甲基硅氧烷(PDMS)膜和聚环糊精(CDP)填充PDMS(CDP-f-PDMS)膜.考察了空白PDMS膜和CDP-f-PDMS膜对苯酚水溶液的渗透蒸发分离性能,证明填充膜优于空白膜.还分别考察了溶剂类型、填充剂用量等制膜因素和操作温度、原料液流量、原料液浓度等操作因素对PDMS膜的渗透蒸发分离性能的影响.当温度为60℃,CDP填充量为1%(质量)时,CDP-f-PDMS膜的渗透通量和分离因子分别可达32.0 g•m-2•h-1和7.2.  相似文献   

7.
制备了用于渗透蒸发的聚二甲基硅氧烷 (PDMS)硅橡胶膜 ,考察了其从水溶液中脱除苯和氯仿的渗透蒸发性能。分析讨论了料液浓度、温度和雷诺数等因素对膜渗透蒸发性能的影响。本研究中所制备的渗透蒸发膜的分离性能优于国外文献值  相似文献   

8.
《应用化工》2016,(11):2121-2124
在传统的正丁醇发酵过程中,通常正丁醇的浓度不仅很低,而且对发酵过程有一定的产物抑制,影响发酵过程的连续正常进行。因此考虑使用聚乙烯醇(PVA)膜在渗透蒸发的作用下浓缩低浓度正丁醇/水溶液,考察了正丁醇原料液浓度、实验温度、真空度等操作条件对膜渗透通量和分离因子的影响。结果表明,渗透通量和分离因子均随温度的增加而增加,在60℃时,分离因子达到最大值;渗透通量随正丁醇进料浓度的增加而降低,分离因子则呈先升高后减小的趋势,并出现最大值;渗透通量和分离因子均随真空度的增加而增加。  相似文献   

9.
《应用化工》2022,(11):2121-2124
在传统的正丁醇发酵过程中,通常正丁醇的浓度不仅很低,而且对发酵过程有一定的产物抑制,影响发酵过程的连续正常进行。因此考虑使用聚乙烯醇(PVA)膜在渗透蒸发的作用下浓缩低浓度正丁醇/水溶液,考察了正丁醇原料液浓度、实验温度、真空度等操作条件对膜渗透通量和分离因子的影响。结果表明,渗透通量和分离因子均随温度的增加而增加,在60℃时,分离因子达到最大值;渗透通量随正丁醇进料浓度的增加而降低,分离因子则呈先升高后减小的趋势,并出现最大值;渗透通量和分离因子均随真空度的增加而增加。  相似文献   

10.
采用壳聚糖为原料,聚酯无纺布为支撑层,用戊二醛交联制备了高选择性、高通量的交联壳聚糖渗透蒸发复合膜.考察了料液浓度、料液温度、膜厚等对偏二甲肼/水体系分离性能的影响.结果表明:在料液温度为10℃,膜厚度为25 μm,进料液中偏二甲肼的质量分数为50%时,改性复合膜的分离因子最高达到5.25,渗透通量可达167 g/(m...  相似文献   

11.
Wastewater containing volatile organic compounds (VOCs) is generated in various industrial processes and is seriously harmful to the natural environment and human health. Its treatment has become extremely important due to increasing environment concerns. Here, a high permeable membrane for fast and high‐efficient VOCs removal from aqueous solutions by pervaporation is reported. The as‐prepared PIM‐1 membrane allows ultrafast permeation of VOCs and exhibits excellent VOCs selectivity, particularly for ethyl acetate, dimethyl ether, and acetonitrile. Typically, the PIM‐1 membrane exhibits an ultrahigh flux and separation factor of 39.5 kg μm m?2 h?1 and 189, respectively, in the pervaporation of 1.0 mol% aqueous ethyl acetate solution. Furthermore, the solubility‐diffusion mechanism is revealed in the pervaporation of 10 kinds of 1.0 mol% VOCs solutions. It is found that the pervaporation performance is affected directly by physicochemical properties of VOCs. Moreover, effects of feed composition and temperature on the pervaporation are studied in details. © 2015 American Institute of Chemical Engineers AIChE J, 62: 842–851, 2016  相似文献   

12.
《分离科学与技术》2012,47(8):1737-1752
Abstract

Removal of volatile organic compounds (VOCs) such as 1,2-dichloroethane, trichloroethylene, chlorobenzene and toluene from water solutions through polyetherimide (PEI)-polyethersulfone (PES) blend hollow fiber membranes was investigated by pervaporation (PV) in this work. The separation performances of the membranes were researched by varying the spinning conditions (such as coagulation temperature and air gap distance) for the preparation of the hollow fibers and the operation conditions (such as velocity, concentration, and temperature of feed liquids). For the PEI-PES blend hollow fiber membrane prepared when the air gap was 7 cm and the temperature of coagulation bath was 45°C, it possessed high selectivity to the aqueous solutions containing 0.04 wt.% of VOCs at 20°C. The separation factors to 1,2-dichloroethane, trichloroethylene, chlorobenzene and toluene were 7069, 5759, 3952, and 3205, respectively. It was found that the pervaporation performance of the blend hollow fiber membrane was strongly related to the molecular size of the VOCs. The order of the selectivities was 1,2-dichloroethane > trichloroethylene > chlorobenzene > toluene.  相似文献   

13.
The membranes were prepared by the incorporation of highly hydrophobic silicalite and carbon molecular sieves (CMS) from different precursors into the PDMS casting solutions. The pervaporative removal of VOCs, such as benzene, from aqueous solutions was carried out using the separation factor and permeation flux as the evaluating parameters. The effects of the CMS types and structures, feed concentrations on the pervaporation performance were preliminarily investigated.  相似文献   

14.
Polymer membranes are potentially selective for separation of organic compounds from a mixture by pervaporation. A novel crosslinked hydroxyterminated polybutadiene based (HTPB) polyurethane urea (PUU)-poly (methyl methacrylate) (PMMA) interpenetrating network (IPN) membrane has been developed for the selective removal of chlorinated volatile organic compounds (VOCs) such as 1,1,2,2-tetrachloroethane, chloroform, carbon tetrachloride, trichloroethylene present in water in very low concentration by pervaporation. IPNs of different PMMA content and also different crosslink density were used. Since the selective permeation and diffusion of the VOCs through the membrane are dependent on their interaction with the membrane material, their sorption and diffusion behaviors through the membrane were also investigated by swelling the membrane in pure VOCs. The sorption and diffusion behaviors were explained with the help of their solubility parameter data and calculated interaction parameter data of the membrane polymers with the VOCs. From the swelling kinetics data, diffusion coefficients of the VOCs through the membrane were calculated. Diffusion coefficients increased with the increase in crosslink density and PMMA content in the membrane. In pervaporation experiment, concentrations of chlorinated organic compounds in feed were varied from 100 ppm (0.01%) to 1000 ppm (0.1%). All the three IPN membranes showed excellent separation performances of the chlorinated VOCs from water. One IPN containing 26% PMMA (PUU-PMMA-3) produced 88.7% trichloroethylene in permeate, trichloroethylene flux and a separation factor of 7842 from a 0.1% aqueous feed after a pervaporation run of 3 h at . All the three IPN membranes of different compositions have shown the separation performances, viz., flux and separation factor for all the VOCs in the order .  相似文献   

15.
Gas treatment by liquid absorption is a well-known process to remove volatile organic compounds (VOCs) from industrial waste gases. Usually the liquid is an organic solvent of high boiling point; however, after VOCs’ absorption it must be regenerated for the possible reuse and this step is classically achieved by heating the liquid. The paper presents the work directed to investigate an alternative regeneration step based on a liquid-vapour membrane separation, i.e. pervaporation. Because most of the energy required in pervaporation processes is consumed to remove the minor component from the initial mixture by selective permeation through the membrane, one can expect a significant energy cut in the operational costs linked to the regeneration of the liquid if the pervaporation step can substitute the heating one. The results reported here show that the technological possibility to use pervaporation is first governed by the stability of the membrane in the absorption liquid. The viability of the overall process is actually controlled by the mutual affinity between the VOCs, the solvent phase and the polymeric material. As a matter of fact, whereas VOCs have to exhibit strong affinities to both the solvent and the membrane material, the polymer has to be well resistant and even repellent to the solvent to avoid the possible sorption in the membrane that would drastically depress the pervaporation efficiency. In other words the membrane transport properties must be specific for the VOCs. This goal was reached following several experimental approaches, going from membrane modifications to the selection of suitable heavy protic solvents. Hence it has been shown for the case of dichloromethane (DCM) that low molecular weights polyalcohols (e.g. glycols) appeared to be suitable media to allow in particular the specific transport of DCM. On the other hand, polydimethylsiloxane (PDMS) based membranes were selected for their stability in these polyglycols and for their marked affinity for DCM. The simulation of the hybrid gas treatment process at pilot-scale was also achieved by a simple model relying on experimental data for both vapour liquid equilibria and permeation flux. A simple comparison of the energy needed to regenerate the heavy solvent by each possible step has also been made.  相似文献   

16.
A polydimethylsiloxane (PDMS) membrane was improved by graft polymerization of 1H,1H,9H-hexadecafluorononyl methacrylate (HDFNMA) by plasma, which had the effect of increasing the selectivity for volatile organic compounds (VOCs). The use of an easy quantitative analysis for the pervaporation through plasma-grafted PDMS membranes was investigated. The degrees of grafting on the inside and reverse side of the grafted PDMS membranes were lower than on the surface. Only part of the HDFNMA sorbed into the PDMS membrane was grafted onto the PDMS membrane. The relationship between the feed concentration and the permeate concentration was observed to be linear. The pervaporation through the grafted PDMS membrane could be used for easy quantitative analysis. The solubility of VOCs for the grafted PDMS membrane was high when compared with the solubility for the PDMS membrane. The grafted PDMS membrane that had high VOC concentrations of the sorbed solution showed an excellent separation performance. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1835–1844, 1999  相似文献   

17.
For the separation of volatile organic compounds (VOCs) from water by pervaporation, three polysiloxaneimide (PSI) membranes were prepared by polycondensation of three aromatic dianhydrides of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA) with a siloxane‐containing diamine. The PSI membranes were characterized using 1H‐NMR, ATR/IR, DSC, XRD, and a Rame‐Hart goniometer for contact angles. The degrees of sorption and sorption selectivity of the PSI membranes for pure organic compounds and organic aqueous solutions were investigated. The pervaporation properties of the PSI membrane were investigated in connection with the nature of organic aqueous solutions. The effects of feed concentration, feed temperature, permeate pressure, and membrane thickness on pervaporation performance were also investigated. The PSI membranes prepared have high pervaporation selectivity and permeation flux towards hydrophobic organic compounds. The PSI membranes with 150‐μm thickness exhibit a high pervaporation selectivity of 6000–9000 and a high permeation flux of 0.031–0.047 kg/m2 h for 0.05 wt % of the toluene/water mixture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2691–2702, 2000  相似文献   

18.
挥发性有机物(VOCs)是一类主要的污染物,其主要成分为烃类、卤代烃、氮烃、含氧烃、硫烃及低沸点的多环香烃等。本文概述了国内外对含VOCs废水的主要治理方法:微生物降解法、气提法、渗透蒸发法和吸附法。最后对VOCs废水处理提出了自己的见解。  相似文献   

19.
渗透气化是一种新型的膜分离技术,因其具有独特的优势已被广泛应用于乙醇-水的分离.从渗透气化的原理和特点出发,介绍了渗透气化膜材料以及渗透气化与精馏、化学反应耦合等技术,并概述了国内外渗透气化膜分离技术在乙醇-水分离中的应用现状.  相似文献   

20.
闫勇 《化工进展》1998,17(5):54-54
简述了渗透汽化的原理及在有机废水中处理中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号