首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose transport was studied in primary hippocampal neuron cultures exposed to ethanol. Immunofluorescent staining with antibodies against neuron-specific enolase and glial fibrillary acidic protein identified approximately 95% of the cultured cells as neurons. Western blot analysis was conducted with polyclonal antisera to glucose transporter isoforms GLUT1 and GLUT3. As previously seen in astrocytes, GLUT1 protein was regulated by the culture medium glucose content. Exposure to 50 and 100 mM of ethanol for 5 hr induced dose-dependent reductions in GLUT1 and GLUT3 protein. In contrast, GLUT1 mRNA abundance was increased relative to controls under the same conditions. Glucose uptake, measured with the nonmetabolized analog, 2-deoxy-D-glucose, was reduced by 50 and 100 mM of ethanol in four experiments. These results indicate a direct effect of ethanol on neuronal glucose transporter expression, which may play a role in the neurotoxic effects of alcohol.  相似文献   

2.
A regulatory mechanism for neuronal excitability consists in controlling sodium channel density at the plasma membrane. In cultured fetal neurons, activation of sodium channels by neurotoxins, e.g., veratridine and alpha-scorpion toxin (alpha-ScTx) that enhance the channel open state probability induced a rapid down-regulation of surface channels. Evidence that the initial step of activity-induced sodium channel down-regulation is mediated by internalization was provided by using 125I-alpha-ScTx as both a channel probe and activator. After its binding to surface channels, the distribution of 125I-alpha-ScTx into five subcellular compartments was quantitatively analyzed by EM autoradiography. 125I-alpha-ScTx was found to accumulate in tubulovesicular endosomes and disappear from the cell surface in a time-dependent manner. This specific distribution was prevented by addition of tetrodotoxin (TTX), a channel blocker. By using a photoreactive derivative to covalently label sodium channels at the surface of cultured neurons, we further demonstrated that they are degraded after veratridine-induced internalization. A time-dependent decrease in the amount of labeled sodium channel alpha subunit was observed after veratridine treatment. After 120 min of incubation, half of the alpha subunits were cleaved. This degradation was prevented totally by TTX addition and was accompanied by the appearance of an increasing amount of a 90-kD major proteolytic fragment that was already detected after 45-60 min of veratridine treatment. Exposure of the photoaffinity-labeled cells to amphotericin B, a sodium ionophore, gave similar results. In this case, degradation was prevented when Na+ ions were substituted by choline ions and not blocked by TTX. After veratridine- or amphotericin B-induced internalization of sodium channels, breakdown of the labeled alpha subunit was inhibited by leupeptin, while internalization was almost unaffected. Thus, cultured fetal neurons are capable of adjusting sodium channel density by an activity-dependent endocytotic process that is triggered by Na+ influx.  相似文献   

3.
Although the functions of serotonin in adult Aplysia have been the focus of numerous investigations, our understanding of the roles played by this neurotransmitter during development is very incomplete. In the previous study (Marois and Carew [1997a] J. Comp. Neurol. 386:477-490), we showed that identified serotonergic cells are present very early during the ontogeny of Aplysia. In order to gain insight into the possible functions that these serotonergic cells may exert, we have used immuno-electron microscopy in this study to examine the projection patterns and target tissues of the serotonergic cells during the larval development of Aplysia. The results indicate that the larval serotonergic cells have numerous and precise connections to non-neuronal and neuronal target tissues: Serotonergic cells innervate the ciliated cells of the velum, numerous muscle systems, possibly visceral organs, and several cells in the central nervous system. Repeated observations of one serotonergic contact onto an undifferentiated neuron in the abdominal ganglion over a short developmental time span suggest that the serotonergic input may trigger axonogenesis in the postsynaptic cell. Apart from this possibility, we suggest that the innervation patterns of the larval serotonergic cells essentially fulfill the same primary function attributed to the adult serotonergic cells, that of modulating ongoing physiological and behavioral activity.  相似文献   

4.
5.
Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), or a combination of both. Dopamine content of the culture medium, the number of tyrosine hydroxylase-immunoreactive neurons, and culture volumes were moderately increased in the BDNF- and GDNF-treated cultures but significantly increased by 6.8-, 3.2- and 2.4-fold, respectively after treatment with the combination of both factors. We conclude that pretreatment of dopaminergic tissue in culture with a combination of BDNF and GDNF may be an effective means to improve the quality of tissue prior to grafting.  相似文献   

6.
OBJECTIVE: To elucidate the role of Helicobacter pylori in relapsing disease after partial gastrectomy for peptic ulcer. DESIGN: Retrospective study of gastroscopies between January 1985 and February 1988. SETTING: Department of Surgery, Helsinki University Central Hospital, Finland. PARTICIPANTS: One hundred and fifty-five patients, who had undergone partial gastrectomy for peptic ulcer disease. MAIN OUTCOME MEASURES: Correlation between clinical and laboratory data, macroscopic findings at gastroscopy and histopathology. RESULTS: At gastroscopy 41 patients showed an ulcer at the site of anastomosis or in the gastric stump and two patients had a history of a previous ulcer recurrence. The median time interval between operation and relapse was 4 years. There was no correlation between ulcer recurrence, sex, age, ABO blood group or other diseases. Smokers and patients using non-steroidal anti-inflammatory drugs (NSAIDs) or alcohol had more relapses, but the difference was not significant. The recurrence rate was higher after Billroth II (BII; 34%) than after Roux-en-Y (14%; P = 0.03) or Billroth I (BI) reconstruction (24%). Giemsa staining demonstrated H. pylori in the gastric stump of 37% of the patients. H. pylori expression was related to age but unrelated to sex, ABO blood group, NSAID use, smoking or alcohol consumption. H. pylori positivity was more common (52%) after BI than after BII (28%; P = 0.04) or Roux-en-Y resection (40%). Recurrent ulcer was more often found in gastric remnants with normal mucosa (36%) than in those with H. pylori-positive gastritis (18%; P = 0.03) or H. pylori-negative gastritis (26%). CONCLUSION: It seems that H. pylori infection plays a minor role in the pathogenesis of ulcer recurrence after partial gastrectomy for peptic ulcer disease. Eradication of H. pylori of the remnant stomach is therefore presumably not effective in preventing ulcer recurrence.  相似文献   

7.
The effects of the nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), were tested on cultured dissociated guinea pig celiac ganglion neurons using whole cell patch-clamp recordings. S-nitrosoacetylpenicillamine induced a concentration- and voltage-dependent inwardly directed shift in holding current (inward current shift) in 89% of neurons. The inward current shift was prevented by pre-treatment with the nitric oxide scavenger reduced hemoglobin and was abolished by intra- or extracellular cesium. The amplitude of the inward current shift was also sensitive to the extracellular potassium concentration. The S-nitrosoacetylpenicillamine-induced inward current shift was mediated by a decrease in calcium-dependent potassium currents (IAHPs); apamin (100 nM), charybdotoxin (10 nM) or tetraethylammonium (5 mM) reduced but did not abolish the amplitude of its inward current shift and a combination of apamin and tetraethylammonium abolished the S-nitrosoacetylpenicillamine-induced inward current response. In the presence of extracellular cobalt, SNAP produced an outward current that was concentration- and voltage-dependent, abolished by reduced hemoglobin and extracellular cesium and reduced by 4-AP (1 mM); in the absence of cobalt, 4-AP increased the SNAP-induced inward current shift. These data indicate that NO exerts dual opposing effects on neuronal potassium conductances, namely an inward current shift mediated through an inhibition of IAHP and induction of an outward current mediated by activation of the potassium delayed rectifier.  相似文献   

8.
The effects of prolonged ethanol exposure on excitatory amino acid receptor stimulated nitric oxide (NO) formation were examined in primary rat cortical neuronal cultures. Chronic ethanol (4 days, 100 mM) potentiated N-methyl-D-aspartate (NMDA)-stimulated NO formation as determined by measuring the conversion of [3H]arginine to [3H]citrulline. In contrast, chronic ethanol had no effect on NO formation stimulated by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxalonepropionic acid, or the calcium ionophore ionomycin. Potassium chloride-stimulated NO formation was also enhanced by chronic ethanol treatment, but this effect was not seen in the presence of the ionotropic glutamate receptor antagonists MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione. Immunoblot analysis of expression of NR1, NR2A, and NR2B receptor subunits showed no difference between control and chronic ethanol-treated cultures. In support of this apparent lack of change in receptor density, there was no difference in the specific binding of 125I-MK-801 between control and chronic ethanol-treated groups. These results demonstrate that prolonged ethanol exposure selectively enhanced NMDA receptor-stimulated NO formation, which may play an important role in alcohol dependence, withdrawal, and alcohol-associated brain damage. These results also suggest that chronic ethanol-induced increases in NMDA receptor function may not be due to a simple increase in the number of NMDA receptors or change in NMDA receptor subunit composition but may instead reflect more complicated and subtle changes.  相似文献   

9.
Attempts to describe a mechanism of neurofibrillary tangle formation often focus on site specific phosphorylations of tau protein. These have typically been described in both Alzheimer's disease and developing brains. Therefore, study of the developmental regulation of Alzheimer epitope tau phosphorylations may help explain their persistence or recurrence during Alzheimer's disease. Using fetal rat hippocampal cultures, we report a spatial and temporal expression of tau phosphorylation during neuronal differentiation. We have examined phosphorylation at the epitopes recognized by monoclonal antibodies, PHF-1 and Tau 1. Tau was highly phosphorylated at the PHF-1 epitope at all culture ages examined using both immunohistochemical staining and Western blots. Tau was heavily phosphorylated at the Tau 1 epitope only in older cultures. The populations of tau recognized by the two antibodies also exhibited different solubilities, suggesting different microtubule binding behaviors: tau phosphorylated at PHF-1 was retained in axons following solubilization whereas Tau 1 immunoreactive tau was not retained in any cell compartment. Finally, in this culture system, maintenance of phosphorylation at the PHF-1 epitope, but not the Tau 1 epitope, required protein kinase C activity. These results indicate unique regulatory mechanisms and roles for each of these phosphorylated tau epitopes.  相似文献   

10.
11.
Exposure of human fetuses to ethanol often results in the fetal alcohol syndrome. Animal models of fetal alcohol syndrome have been developed and used to examine the consequences of prenatal ethanol exposure on the central nervous system. The objective of this study was to determine the long-term effects of prenatal ethanol exposure on parvalbumin-expressing (PA+) GABAergic neurons of the rat medial septum. Pregnant Long-Evans rats were maintained on 1 of 3 diets from gestational day 0 to 21: an ethanol-containing liquid diet in which ethanol accounted for 35% of the total calories, a similar diet with the isocaloric substitution of sucrose for ethanol, or a lab chow control diet. Offspring were killed on postnatal day 60, and their brains were prepared for parvalbumin immunocytochemistry. Female rats exposed to the ethanol-containing diet during gestation had 42% fewer PA+ neurons in the medial septum and reduced PA+ cell density when compared with female rats exposed to the sucrose diet. Ethanol females also had fewer PA+ neurons per unit volume than sucrose females. Male rats exposed to ethanol did not display a similar reduction in PA+ neurons or density. No effect of prenatal diet was found on the area or volume of the medial septum, nor were cell diameters affected. As such, prenatal exposure to ethanol seems to reduce permanently the number of PA+ neurons in the female rat medical septum without affecting area, volume, or neuronal size. Functional implications and possible relations to the fetal alcohol syndrome are discussed.  相似文献   

12.
The serotonergic dorsal raphe nucleus is innervated by corticotropin-releasing factor (CRF) and expresses CRF receptors, suggesting that endogenous CRF impacts on this system. The present study characterized interactions between CRF and the dorsal raphe serotonin (5-HT) system. The effects of intracerebroventricularly (i.c.v.) administered CRF on microdialysate concentrations of 5-HT in the lateral striatum of freely moving rats were determined. CRF had biphasic effects, with 0.1 and 0.3 microgram decreasing, and 3.0 micrograms increasing 5-HT dialysate concentrations. i.c.v. administration of CRF inhibited neuronal activity of the majority of dorsal raphe neurons at both low (0.3 microgram) and high (3 micrograms) doses. Likewise, intraraphe administration of CRF (0.3 and 1.0 ng) had predominantly inhibitory effects on discharge rate. Together, these results suggest that CRF is positioned to regulate the function of the dorsal raphe serotonergic system via actions within the cell body region. This regulation may play a role in stress-related psychiatric disorders in which 5-HT has been implicated.  相似文献   

13.
Rats were trained to self-administer cocaine (0.5 mg/kg/infusion) and were then pretreated with the 5-HT1A agonist 8-OH-DPAT (0.125, 0.25 or 0.5 mg/kg, SC). 8-OH-DPAT pretreatment produced a decrease in reinforced response rates. When the effect of 8-OH-DPAT (0.5 mg/kg, SC) on responding for a range of cocaine doses was assessed, the drug produced a decrease in response rates when lower doses of cocaine served as the reinforcer. Fluoxetine (10 mg/kg, IV), an indirect 5-HT agonist, also reduced reinforced response rates for a low dose infusion of cocaine. Rates of responding for infusions of higher cocaine doses were not affected by fluoxetine pretreatment during an FR1 schedule of reinforcement. When an FR10 schedule of reinforcement was imposed, reinforced response rates for infusions of higher doses of cocaine were also reduced. Thus, under conditions that produce high rates of responding (low dose infusion or high ratio requirements for an infusion) fluoxetine reduced responding. This effect may be due to the effects at the 5-HT1A receptor, since 8-OH-DPAT produced a similar effect on cocaine self-administration. Given that the effects of these 5-HT agonists are observed only when low doses of cocaine serve as the reinforcer or when task demands are high, it is possible that the suppression of responding reflects an effect that is not specific to the reinforcing impact of cocaine. An alternative explanation for these effects incorporates a concept of unit cost/cocaine infusion that allows for direct comparison across studies that employ different reinforcement schedules.  相似文献   

14.
In adult animals and man, both acute and chronic ethanol intake is associated with depression of myocardial performance. Accordingly, the cardiac effects of maternal ethanol infusions, in a manner comparable to common obstetric practice of inhibition of premature labor with ethano mighte for inhibition of premature labor, were evaluated in six chronically instrumented fetal sheep. Fetal and ewe arterial PO2, PCO2, and pH values remained within normal limits with infusion rates of 15 c.c. per kilogram of 10 per cent ethanol over two hours (blood ethanol = 110 mg. per cent) and 15 c.c. per kilogram over one hour (blood ethanol = 210 mg. per cent). Fetal instrument evaluation (for 14 to 30 days after operation) provided data concerning pressures and cardiac dimensions which allowed analysis of left ventricular performance. Ethanol produced a significant depression of the extent (p less than 0.01) and velocity (p less than 0.001) of left ventricular myocardial fiber shortening as well as in the mean rate of left ventricular myocardial fiber shortening as well as in the mean rate of left ventricular circumferential fiber shortening (p less than 0.01). These indices of cardiac contractility were depressed in the absence of changes in end diastolic diameter, left atrial pressure, and systemic arterial pressure. Thus, the practice of inhibition of premature labor with ethano6 might contribute to depressed myocardial performance in the neonatal period.  相似文献   

15.
1. The effects of the volatile anesthetics enflurane, halothane, and isoflurane on gamma-aminobutyric acid (GABA) receptor-mediated inhibitory postsynaptic currents (IPSCs) were studied in cultured rat hippocampal neurons. The experimental concentrations of anesthetics were measured directly using gas chromatography. All three anesthetics increased the overall duration of IPSCs, measured as the time to half-decay (T1/2). Clinically effective concentrations of anesthetics [between 0.5 and 1.5 times MAC (minimum alveolar concentration)] produced between 100 and 400% increases in T1/2. These effects were fully reversible, and did not involve alterations in the reversal potential for the IPSC (EIPSC). 2. The decay of the IPSC was fitted as a sum of two exponential functions, yielding a fast component (tau fast = 20 ms), and a slow component (tau slow = 77 ms), such that the fast component accounted for 79% of the IPSC amplitude and 52% of the total charge transfer. All three anesthetics produced concentration-related increases in the amplitude and charge transfer of the slow component, while simultaneously decreasing the amplitude and charge transfer of the fast component. Thus T1/2 approximated tau fast under control conditions, but approximated tau slow in the presence of the anesthetics. 3. Varying the calcium chelating agents in the recording pipettes had no effect on the quality or magnitude of alterations in IPSC kinetics produced by halothane, suggesting that variations in intracellular calcium levels are not required for the effect of halothane on the time course of the IPSC. 4. The (+)-stereoisomer of isoflurane produced greater increases in the duration of the IPSC than the (-)-isomer when applied at approximately equal concentrations, suggesting that there is a structurally selective site of interaction for isoflurane that modulates the GABAA receptor. 5. These results suggest that the previously shown abilities of volatile anesthetics to potentiate responses to exogenously applied GABA and to prolong the duration of GABA-mediated synaptic inhibition may be due to an alteration in the gating kinetics of the GABAA receptor/channel complex. Prolongation of synaptic inhibition in the CNS is consistent with the physiological effects that accompany anesthesia and may contribute to the mechanism of anesthetic action.  相似文献   

16.
17.
Molecular effects of pre-conditioning by 1-h hypoxia were investigated in cultured neurons from fetal rat forebrain, submitted the following day to a 6-h hypoxia that induces apoptosis. While preventing from apoptosis, pre-conditioning led to increased number of living neurons, DNA synthesis, with persistent overexpression of Bcl-2 and proliferating cell nuclear antigen (PCNA). Adaptative mechanisms would involve anti-apoptotic proteins and regulators of the cell cycle, to finally promote neuronal proliferation.  相似文献   

18.
We have used genetic engineering to obtain secretion of anti-human CD5 antibody fragments from Escherichia coli for conjugation to the 30-kDa form of ricin A chain (RTA30). This was accomplished by introducing stop codons at two positions in the hinge region of the human IgG1 gene so that coexpression of the truncated heavy-chain genes (Fd') with a light chain would result in Fab' and/or F(ab')2 proteins containing either one or two interheavy-chain cysteines. An Fd' gene encoding both interheavy-chain cysteines yielded a mixture of F(ab')2 and Fab', which could be separated by size-exclusion chromatography. An Fd' gene encoding only one interheavy-chain cysteine yielded primarily Fab'. Purified F(ab')2 protein was equivalent to unlabeled chimeric IgG in competing for binding of IgG with CD5 antigen, while the molar concentration of the monovalent Fab' required for 50% binding inhibition was 4- to 5-fold higher than IgG. An immunoconjugate was prepared with Fab' by direct coupling to the unique free cysteine on RTA30. The bivalent F(ab')2 was conjugated to RTA30 after derivatization with the crosslinking agent 5-methyl-2-iminothiolane. These immunoconjugates efficiently killed a CD5+ T-cell line and human peripheral blood T cells.  相似文献   

19.
Riluzole is used clinically in patients with amyotrophic lateral sclerosis. As oxidative stress, in addition to excitotoxicity, may be a major mechanism of motoneuron degeneration in patients with amyotrophic lateral sclerosis, we examined whether riluzole protects against nonexcitotoxic oxidative injury. Probably reflecting its weak antiexcitotoxic effects, riluzole (1-30 microM) attenuated submaximal neuronal death induced by 24-h exposure to 30 microM kainate or NMDA, but not that by 100 microM NMDA, in cortical cultures. Riluzole also attenuated nonexcitotoxic oxidative injury induced by exposure to FeCl3 in the presence of MK-801 and CNQX. Consistent with its antioxidative effects, riluzole reduced Fe3+-induced lipid peroxidation, and inhibited cytosolic phospholipase A2. By contrast, riluzole did not attenuate neuronal apoptosis induced by staurosporine. Rather unexpectedly, 24-48-h exposure to 100-300 microM riluzole induced neuronal death accompanied by nuclear and DNA fragmentations, which was attenuated by caspase inhibitor carbobenzyloxy-Val-Ala-Asp-fluoromethyl ketone but not by protein synthesis inhibitor cycloheximide. The present study demonstrates that riluzole has direct antioxidative actions, perhaps in part by inhibiting phospholipase A2. However, in the same neurons, riluzole paradoxically induces neuronal apoptosis in a caspase-sensitive manner. Considering current clinical use of riluzole, further studies are warranted to investigate its potential cytolethal effects.  相似文献   

20.
Normal-gravity (22 to 24 degrees Plato) wheat mashes were inoculated with five industrially important strains of lactobacilli at approximately 10(5), approximately 10(6), approximately 10(7), approximately 10(8), and approximately 10(9) CFU/ml in order to study the effects of the lactobacilli on yeast growth and ethanol productivity. Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus #3, Lactobacillus rhamnosus, and Lactobacillus fermentum were used. Controls with yeast cells but no bacterial inoculation and additional treatments with bacteria alone inoculated at approximately 10(7) CFU/ml of mash were included. Decreased ethanol yields were due to the diversion of carbohydrates for bacterial growth and the production of lactic acid. As higher numbers of the bacteria were produced (depending on the strain), 1 to 1.5% (wt/vol) lactic acid resulted in the case of homofermentative organisms. L. fermentum, a heterofermentative organism, produced only 0.5% (wt/vol) lactic acid. When L. plantarum, L. rhamnosus, and L. fermentum were inoculated at approximately 10(6) CFU/ml, an approximately 2% decrease in the final ethanol concentration was observed. Smaller initial numbers (only 10(5) CFU/ml) of L. paracasei or Lactobacillus #3 were sufficient to cause more than 2% decreases in the final ethanol concentrations measured compared to the control. Such effects after an inoculation of only 10(5) CFU/ml may have been due to the higher tolerance to ethanol of the latter two bacteria, to the more rapid adaptation (shorter lag phase) of these two industrial organisms to fermentation conditions, and/or to their more rapid growth and metabolism. When up to 10(9) CFU of bacteria/ml was present in mash, approximately 3.8 to 7.6% reductions in ethanol concentration occurred depending on the strain. Production of lactic acid and a suspected competition with yeast cells for essential growth factors in the fermenting medium were the major reasons for reductions in yeast growth and final ethanol yield when lactic acid bacteria were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号