首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 421 毫秒
1.
吴舟 《机床与液压》2023,51(17):190-196
为了探究不同流态下动压滑动轴承润滑及承载特性,以织构化动压滑动轴承为研究对象,基于Ng-Pan湍流润滑理论,建立不同流态下织构化动压滑动轴承润滑模型,分析润滑油流态、微织构以及轴承结构参数对动压滑动轴承油膜压力以及承载力的影响。研究表明:湍流流态能够有效地提高织构化动压滑动轴承的油膜压力,临界雷诺数随间隙比的增加而减小,随偏心率的增加而增大;不同流态下织构化轴承承载力随坑径与膜厚的增加而逐渐减小,随间距的增加呈现波动变化,随转速、偏心率与长径比的增加而增加,且湍流流态的承载远高于层流流态。  相似文献   

2.
目的 探究粗糙度对交叉沟槽织构化表面流体动力润滑性能的影响。方法 基于质量守恒空化边界条件和平均流量模型的Reynolds方程,建立计入表面粗糙度效应的交叉沟槽织构化表面流体动力润滑理论模型,采用多重网格法进行数值求解,获得润滑油膜的压力分布和承载能力,分析粗糙度对交叉沟槽织构化表面流体润滑性能的影响规律。结果 油膜承载能力随着沟槽宽度的增大而增大,表面粗糙度对油膜承载能力的影响随着沟槽宽度的增大而增大。存在最佳的沟槽深度和间距使得交叉沟槽所产生的流体动力润滑效应达到最强,表面粗糙度对油膜承载能力的影响在最佳沟槽深度附近最大,粗糙度对油膜承载能力的影响随着沟槽间距的增加而增大。油膜承载能力随着交叉角度的增大呈现先增大后减小的趋势,粗糙度对油膜承载能力的影响随着交叉角度的增加而增大。交叉沟槽的重叠系数对油膜平均压力几乎没有任何影响,粗糙度对油膜承载能力也几乎不受重叠系数的影响。结论 在利用数值分析方法研究交叉沟槽织构流体动力润滑性能时,不能忽略粗糙度的影响,表面粗糙度在一定程度上抑制了交叉沟槽所产生的流体动力润滑效应,降低了油膜承载能力。  相似文献   

3.
目的 研究局部凹坑织构对无限长可倾瓦推力轴承的流体动压润滑性能的影响.方法 基于质量守恒空化边界条件的雷诺方程,建立了局部凹坑织构无限长可倾瓦推力轴承动压润滑二维理论模型.采用多重网格法求解雷诺方程,模拟局部凹坑织构无限长可倾瓦推力轴承的流体动压分布,分析局部织构比、位置比、深度、水平间距及数量对流体动压润滑性能的影响.结果 所建立的二维局部织构无限长可倾瓦推力轴承理论模型的数值解与解析解误差较小,能够有效地分析油膜流体动压润滑性能.当收敛比较小时,在入口区进行局部微凹坑织构化处理能增强流体动压润滑效应,并存在最优局部织构比使得油膜承载能力达到最大;而当收敛比较大时,局部微凹坑织构对油膜承载能力的影响较小.油膜承载能力随着局部织构位置比的增大而逐渐减小.存在最优凹坑深度能够最大化轴承的承载能力,并且最佳凹坑深度随着收敛比的增加而减小.油膜承载能力随着凹坑纵向间距的增大而减小,随着凹坑数目的增大而增大.结论 局部织构能够有效地改善可倾瓦推力轴承的摩擦学性能,增强轴承的承载能力,而局部织构的几何参数与轴瓦的收敛比相互影响,存在着最优织构几何参数和收敛比的组合能够最大化轴承的承载能力.  相似文献   

4.
基于广义Reynolds方程,建立圆柱滑动轴承贫油润滑模型,分析了入口油膜厚度对滑动轴承贫油润滑性能的影响。数值计算结果表明:在载荷和转速不变时,供油条件明显影响油膜收敛区的油膜厚度、承载力等参数;随入口油膜厚度的增加,滑动轴承承载区油膜厚度、端泄流量、有效承载面积增加,而轴承偏心率和油膜起始角随供油量的增加而减小。  相似文献   

5.
唐杰  曾杰  鲁鑫 《机床与液压》2022,50(19):134-139
为研究T形沟槽形非光滑表面的形貌参数对摩擦性能的影响,验证自组装凹坑形非光滑表面的耐磨性能,基于稳态二维不可压缩Reynolds方程,建立T形沟槽表面织构化理论模型;利用有限差分法和高斯-赛德尔迭代法求解金属表面的油膜压力分布和剪切应力,进而获得油膜承载力和摩擦因数;对T形槽织构的宽度系数比α、深度系数比β对金属-橡胶摩擦副油膜承载能力和摩擦因数的影响规律进行数值分析。结果表明:T形沟槽织构的存在使得油膜内部的压力增大,并且随T形沟槽宽度系数比增加,织构动润滑性能先增大后减小再增加,宽度系数比在40%时达到最佳,且宽度系数比越大,织构的动压效应越差,宽度系数比无限接近1时,沟槽突变为矩形沟槽,使动压效应增加;随着T形沟槽深度系数比增加,织构动润滑性能先增加后减小,宽度系数比在40%~60%内最佳;在流体动压润滑范围内,适当控制T形沟槽的宽度比和深度比,使沟槽底部尽可能平整,保证织构上下两部分良好的协同作用和动压区域,便能获得润滑减摩性能最好的T形沟槽表面织构。  相似文献   

6.
目的提高压裂泵柱塞表面的摩擦学性能。方法基于稳态二维不可压缩Reynolds方程,建立沟槽形表面织构化柱塞动压润滑理论模型,然后利用有限差分法和高斯-赛德尔迭代法求解柱塞表面的油膜压力分布和剪切应力,进而获得油膜承载力和摩擦系数,开展最小油膜厚度、织构的深度、横截面形状、面积占比以及分布角度对柱塞密封副油膜承载能力和摩擦系数影响规律的数值分析。结果随矩形沟槽织构深度从2μm增加到40μm,织构的动压润滑性能先增大后减小,当深度约为最小油膜厚度的0.6倍时达到最佳,并且最小油膜厚度越大,织构的动压效应越差。4种横截面沟槽织构的动压润滑性能优劣顺序为:矩形内凸阶梯型椭圆形V型。随织构宽度从100μm增加到480μm,油膜承载力先增加后减小,宽度在360μm(72%面积占比)时达到最大。在6种分布角度中,60°矩形沟槽织构的润滑减磨性能最好。结论在流体动压润滑范围内,适当减小最小油膜厚度,沟槽底部尽可能平整,保持织构深度略小于最小油膜厚度,并使垂直速度方向油膜收敛区域的织构长度较长,便能获得润滑减摩性能较好的沟槽形表面织构。合理参数的沟槽形织构能够极大提高压裂泵柱塞表面的油膜承载力,降低摩擦系数,有利于延长柱塞密封副的使用寿命。  相似文献   

7.
本文以大型轧钢机径向轴承为例,在计入压粘效应的前提下,分别采用 Boussinesq方程和三维有限元法,计算了轴瓦内表面的变位,求得了有限长径向轴承在偏心率 e=0.9时的弹性流体动力润滑解答,并对两者的压力分布、承载力、最小油膜厚度以及偏位角等进行了比较。  相似文献   

8.
目的研究不同供油条件下织构表面的润滑性能。方法首先,建立考虑表面织构的乏油润滑模型,求解修正雷诺方程获得乏油工况下考虑织构表面的润滑油膜厚度以及压力分布。然后,依据求得的润滑油膜厚度判断计算域内各点润滑状态,通过接触压力及油膜厚度分别计算边界润滑、混合润滑以及流体润滑状态下的切应力,并积分求得摩擦力进而得到摩擦系数。结果模拟了供油层厚度为50~500 nm以及充分供油条件下三种织构的润滑行为,获得了不同润滑状态下表面织构的摩擦系数。速度为0.1 m/s时,供油量对接触区油膜厚度的影响较小,不同润滑状态下织构表现出不同的润滑性能。速度为0.2 m/s时,供油层厚度对油膜厚度的影响较大,随着供油层厚度的增大,膜厚明显增加,摩擦系数在供油层厚度为200 nm时最小。结论接触副处于流体润滑状态时,织构表面不具有减摩效果。接触副处于边界润滑状态时,织构表面具有减摩效果,并且织构较密时,摩擦系数较小。接触副处于混合润滑状态时,织构过于稀疏或密集时均不具有减摩效果,但是合理分布的织构具有减摩效果。  相似文献   

9.
目的 研究不同工况下正弦沟槽织构对柱塞密封副摩擦性能的影响,以降低压裂泵柱塞密封副的摩擦磨损.方法 基于压裂泵柱塞密封副几何模型和流体润滑理论,建立了正弦微沟槽织构化柱塞-橡胶密封副动压润滑数值理论模型,通过仿真模拟研究了不同柱塞密封压力、运动速度对正弦织构减磨性能的影响.结果 不同密封压力下,从40 MPa增至140 MPa时,织构化柱塞表面的油膜承载力及其增长率都不断增大,摩擦系数增大,增长率减小,且柱塞运动速度越高,油膜承载力及摩擦系数越大.不同柱塞运动速度下,油膜承载力和柱塞速度成线性增长关系,摩擦系数不断增大,增长率则呈现减小趋势.针对常用的压裂泵工况,柱塞运动速度和密封压力为错峰配合.根据仿真结果可以看出,在柱塞运动速度-密封压力为150冲次/min-80 MPa工况下,油膜承载力最大,摩擦系数最小,而300冲次/min-40 MPa工况下的油膜承载力最小,摩擦系数系数最大.结论 正弦沟槽织构能够有效改善柱塞密封副的动压润滑性能,在文中的正弦沟槽织构参数下,随着柱塞密封压力、运动速度的上升,油膜承载力和摩擦系数均呈现增长趋势.  相似文献   

10.
为了提高油膜承载力、改善润滑效果、优化织构化表面的摩擦学性能,研究不同黏度润滑油下网状织构的润滑性能。设计4种不同凹槽宽度的网状织构,通过测量接触角、油膜承载力以及摩擦因数,得到不同转速、不同黏度润滑油下4种网状织构的油膜承载力以及摩擦因数的变化规律。实验结果表明:在4种织构中,凹槽宽度为0.4 mm的网状织构润滑性能最好,在设定的实验条件下,最大油膜承载力为0.52 N,最小摩擦因数为0.019。此外,接触角测量实验表明凹槽宽度为0.4 mm的网状织构表面疏水性能更好,有比较好的成膜能力,使得织构表面动压承载力有比较大提升,摩擦因数也更小。比较不同黏度润滑油和不同转速下网状织构润滑性能,黏度越大的润滑油,油膜承载力越大,润滑效果更佳。同时,油膜承载力随着转速的增大而增大,在润滑油黏度较高时这种影响更为显著。  相似文献   

11.
为了探究表面织构对动压轴承热流体润滑特性的影响,计入热流体耦合因素更接近轴承的实际工况。以矩形、三角形、圆形三种表面织构形式动压轴承为研究对象,联立Reynolds方程、能量方程、黏温方程和不同形式织构几何特征方程,建立织构化轴承热流体耦合模型。采用有限差分法求解得到油膜压力场分布、温度场分布及轴承特性参数,并分析织构形状、深度、进油温度等因素对织构化轴承特性的影响。结果表明:表面织构能够有效降低油膜温升,改善轴承润滑性能;不同形式织构对于轴承热流体特性影响有所差异,低偏心时矩形织构表现出更好的润滑性能;进油温度对于织构化轴承热流体特性有较大影响,随着进油温度的升高,轴承的特性参数在不断下降,但幅度逐渐减缓。制备了织构化轴承试件并进行工况测试,试验结果与理论计算对比分析,趋势规律一致,验证了结论的合理性、正确性。  相似文献   

12.
齐晓华  魏冠义  文晓娟 《表面技术》2017,46(12):147-152
目的研究不同凹坑形状组合分布对表面特性的影响规律,进一步提高微造型表面的摩擦学性能和承载能力。方法利用有限元仿真技术和单因素仿真设计,分析比较半球形、方形、三角形三种凹坑形状混合分布的微造型表面,对镍基718高温合金摩擦学性能的影响。结果分析获得了不同速度和载荷下,不同微造型表面对油膜承载力和摩擦系数的影响规律。半球形、方形、三角形三种凹坑形状共同存在的微造型表面的承载能力最好,而半球形凹坑和方形凹坑组合分布的微造型表面的摩擦系数最小。结论对镍基718高温合金材料进行表面凹坑修饰,可以显著提高油膜的承载能力,有利于完整润滑油膜的形成。不同凹坑形状的组合分布对材料摩擦学性能和承载能力的影响非常大,随着速度和载荷的增大,各微造型表面的摩擦系数差别减小,凹坑形状及组合分布对摩擦学性能的影响减弱。  相似文献   

13.
目前对于多种织构复合表面轴承的排列方式的研究有待进一步深化。为了提升轴承承载力、降低摩擦因数和提升轴承稳定性,数值模拟及试验研究复合微织构排列方式对滑动轴承系统的动静特性的影响,并与单一微织构轴承及光滑轴承进行比较。利用有限差分法对轴承转子系统中油膜的Reynolds方程进行数值求解,针对圆形复合矩形、三角形复合菱形及六边形复合月牙形三种复合织构,在四种不同排列方式的条件下对轴承静特性(油膜压力、承载力、摩擦阻力和端泄量)以及轴承动特性(刚度系数和阻尼系数)的影响进行研究,并利用摩擦磨损试验仪对摩擦副摩擦学性能进行进一步试验探究。理论及试验结果显示,复合微织构轴承比光滑轴承和单一微织构轴承获得更大的承载力、更小的摩擦因数、更佳的动特性性能;三角形复合菱形微织构时摩擦副性能最佳,排列方式为周向对应平行排列时能够取得更佳的摩擦及润滑性能。研究复合织构排列方式对轴承润滑性能的影响可为复合织构在实际工况中应用提供理论参考和指导。  相似文献   

14.
目的 提升水润滑轴承的摩擦学性能.方法 采用流固耦合的方法,对具有该复合型织构的水润滑轴承进行研究,将拥有仿生硅藻的多孔结构(矩形-半球型复合型织构)应用在轴承的高压区位置.分析具有矩形-半球型的复合织构的水润滑轴承在不同载荷、织构宽度以及间距的作用下,其摩擦学特性的变化.结果 通过与光滑轴承和单层织构轴承进行对比可知,随着载荷的增大,矩形-半球型复合型织构轴承的承载力随之增加,摩擦系数随之减小,并且有最大的轴承承载力和最小的摩擦系数.随着第一层及第二层织构宽度的增加,复合型织构轴承的承载力虽有复杂波动,但总体呈现上升趋势,摩擦系数呈现下降趋势.在间距较小时,复合型织构轴承的摩擦学性能更优,在间距一定的情况下,存在最优的织构个数,使得轴承的摩擦系数最小.结论 具有矩形-半球型复合织构的水润滑轴承适合在重载条件下工作,织构尺寸较大时,能产生较好的摩擦学性能;在间距较小时,复合型织构的摩擦学性能较为优异,且存在最优的织构个数.  相似文献   

15.
以流体润滑为基础,结合Reynolds方程和微凸体模型在考虑润滑油变黏度等因素条件下,建立活塞环-气缸套三维瞬态流体动压润滑模型。采用有限差分法结合MATLAB语言环境编制瞬态流体动压润滑程序并进行仿真计算,研究缸套内表面网纹对活塞环-缸套润滑摩擦性能的影响。结果表明:采用较大综合粗糙度或者交叉型网纹的缸套时,最小油膜厚度值增大、流体摩擦力和摩擦热流量减小,这对于提高润滑性能、减小活塞环与缸套间的摩擦损失有着重要的作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号