首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feature detection in geometric datasets is a fundamental tool for solving shape matching problems such as partial symmetry detection. Traditional techniques usually employ a priori models such as crease lines that are unspecific to the actual application. Our paper examines the idea of learning geometric features. We introduce a formal model for a class of linear feature constellations based on a Markov chain model and propose a novel, efficient algorithm for detecting a large number of features simultaneously. After a short user‐guided training stage, in which one or a few example lines are sketched directly onto the input data, our algorithm automatically finds all pieces of geometry similar to the marked areas. In particular, the algorithm is able recognize larger classes of semantically similar but geometrically varying features, which is very difficult using unsupervised techniques. In a number of experiments, we apply our technique to point cloud data from 3D scanners. The algorithm is able to detect features with very low rates of false positives and negatives and to recognize broader classes of similar geometry (such as “windows” in a building scan) even from few training examples, thereby significantly improving over previous unsupervised techniques.  相似文献   

2.
We present a streaming method for reconstructing surfaces from large data sets generated by a laser range scanner using wavelets. Wavelets provide a localized, multiresolution representation of functions and this makes them ideal candidates for streaming surface reconstruction algorithms. We show how wavelets can be used to reconstruct the indicator function of a shape from a cloud of points with associated normals. Our method proceeds in several steps. We first compute a low‐resolution approximation of the indicator function using an octree followed by a second pass that incrementally adds fine resolution details. The indicator function is then smoothed using a modified octree convolution step and contoured to produce the final surface. Due to the local, multiresolution nature of wavelets, our approach results in an algorithm over 10 times faster than previous methods and can process extremely large data sets in the order of several hundred million points in only an hour.  相似文献   

3.
Matrix Trees     
We propose a new data representation for octrees and kd‐trees that improves upon memory size and algorithm speed of existing techniques. While pointerless approaches exploit the regular structure of the tree to facilitate efficient data access, their memory footprint becomes prohibitively large as the height of the tree increases. Pointerbased trees require memory consumption proportional to the number of tree nodes, thus exploiting the typical sparsity of large trees. Yet, their traversal is slowed by the need to follow explicit pointers across the different levels. Our solution is a pointerless approach that represents each tree level with its own matrix, as opposed to traditional pointerless trees that use only a single vector. This novel data organization allows us to fully exploit the tree's regular structure and improve the performance of tree operations. By using a sparse matrix data structure we obtain a representation that is suited for sparse and dense trees alike. In particular, it uses less total memory than pointer‐based trees even when the data set is extremely sparse. We show how our approach is easily implemented on the GPU and illustrate its performance in typical visualization scenarios.  相似文献   

4.
The rendering of large data sets can result in cluttered displays and non‐interactive update rates, leading to time consuming analyses. A straightforward solution is to reduce the number of items, thereby producing an abstraction of the data set. For the visual analysis to remain accurate, the graphical representation of the abstraction must preserve the significant features present in the original data. This paper presents a screen space quality method, based on distance transforms, that measures the visual quality of a data abstraction. This screen space measure is shown to better capture significant visual structures in data, compared with data space measures. The presented method is implemented on the GPU, allowing interactive creation of high quality graphical representations of multivariate data sets containing tens of thousands of items.  相似文献   

5.
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp .  相似文献   

6.
Motion Compression using Principal Geodesics Analysis   总被引:1,自引:0,他引:1  
Due to the growing need for large quantities of human animation data in the entertainment industry, it has become a necessity to compress motion capture sequences in order to ease their storage and transmission. We present a novel, lossy compression method for human motion data that exploits both temporal and spatial coherence. Given one motion, we first approximate the poses manifold using Principal Geodesics Analysis (PGA) in the configuration space of the skeleton. We then search this approximate manifold for poses matching end-effectors constraints using an iterative minimization algorithm that allows for real-time, data-driven inverse kinematics. The compression is achieved by only storing the approximate manifold parametrization along with the end-effectors and root joint trajectories, also compressed, in the output data. We recover poses using the IK algorithm given the end-effectors trajectories. Our experimental results show that considerable compression rates can be obtained using our method, with few reconstruction and perceptual errors.  相似文献   

7.
8.
The accurate measurement of the light transport characteristics of a complex scene is an important goal in computer graphics and has applications in relighting and dual photography. However, since the light transport data sets are typically very large, much of the previous research has focused on adaptive algorithms that capture them efficiently. In this work, we propose a novel, non-adaptive algorithm that takes advantage of the compressibility of the light transport signal in a transform domain to capture it with less acquisitions than with standard approaches. To do this, we leverage recent work in the area of compressed sensing, where a signal is reconstructed from a few samples assuming that it is sparse in a transform domain. We demonstrate our approach by performing dual photography and relighting by using a much smaller number of acquisitions than would normally be needed. Because our algorithm is not adaptive, it is also simpler to implement than many of the current approaches.  相似文献   

9.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

10.
We present a new system for robustly performing Boolean operations on linear, 3D polyhedra. Our system is exact, meaning that all internal numeric predicates are exactly decided in the sense of exact geometric computation. Our BSP-tree based system is 16-28× faster at performing iterative computations than CGAL's Nef Polyhedra based system, the current best practice in robust Boolean operations, while being only twice as slow as the non-robust modeler Maya. Meanwhile, we achieve a much smaller substrate of geometric subroutines than previous work, comprised of only 4 predicates, a convex polygon constructor, and a convex polygon splitting routine. The use of a BSP-tree based Boolean algorithm atop this substrate allows us to explicitly handle all geometric degeneracies without treating a large number of cases.  相似文献   

11.
In this paper, we present a novel method for detecting partial symmetries in very large point clouds of 3D city scans. Unlike previous work, which has only been demonstrated on data sets of a few hundred megabytes maximum, our method scales to very large scenes: We map the detection problem to a nearest‐neighbour problem in a low‐dimensional feature space, and follow this with a cascade of tests for geometric clustering of potential matches. Our algorithm robustly handles noisy real‐world scanner data, obtaining a recognition performance comparable to that of state‐of‐the‐art methods. In practice, it scales linearly with scene size and achieves a high absolute throughput, processing half a terabyte of scanner data overnight on a dual socket commodity PC.  相似文献   

12.
In this paper we present a new algorithm for accurate rendering of translucent materials under Spherical Gaussian (SG) lights. Our algorithm builds upon the quantized‐diffusion BSSRDF model recently introduced in [ [dI11] ]. Our main contribution is an efficient algorithm for computing the integral of the BSSRDF with an SG light. We incorporate both single and multiple scattering components. Our model improves upon previous work by accounting for the incident angle of each individual SG light. This leads to more accurate rendering results, notably elliptical profiles from oblique illumination. In contrast, most existing models only consider the total irradiance received from all lights, hence can only generate circular profiles. Experimental results show that our method is suitable for rendering of translucent materials under finite‐area lights or environment lights that can be approximated by a small number of SGs.  相似文献   

13.
Thin elastic rods such as cables, phone coils, tree branches, or hair, are common objects in the real world but computing their dynamics accurately remains challenging. The recent Super-Helix model, based on the discrete equations of Kirchhoff for a piecewise helical rod, is one of the most promising models for simulating non-stretchable rods that can bend and twist. However, this model suffers from a quadratic complexity in the number of discrete elements, which, in the context of interactive applications, makes it limited to a few number of degrees of freedom - or equivalently to a low number of variations in curvature along the mean curve. This paper proposes a new, recursive scheme for the dynamics of a Super-Helix, inspired by the popular algorithm of Featherstone for serial multibody chains. Similarly to Featherstone's algorithm, we exploit the recursive kinematics of a Super-Helix to propagate elements inertias from the free end to the clamped end of the rod, while the dynamics is solved within a second pass traversing the rod in the reverse way. Besides the gain in linear complexity, which allows us to simulate a rod of complex shape much faster than the original approach, our algorithm makes it straightforward to simulate tree-like structures of Super-Helices, which turns out to be particularly useful for animating trees and plants realistically, under large displacements.  相似文献   

14.
In this paper, we propose a new method for reconstructing 3D models from a noisy and incomplete 3D scan and a coarse template model. The main idea is to maintain characteristic high‐level features of the template that remain unchanged for different variants of the same type of object. As invariants, we chose the partial symmetry structure of the template model under Euclidian transformations, i.e. we maintain the algebraic structure of all reflections, rotations and translations that map the object partially to itself. We propose an optimization scheme that maintains continuous and discrete symmetry properties of this kind while registering a template against scan data using a deformable iterative closest points (ICP) framework with thin‐plate‐spline regularization. We apply our new deformation approach to a large number of example data sets and demonstrate that symmetry‐guided template matching often yields much more plausible reconstructions than previous variants of ICP.  相似文献   

15.
In this paper, we describe a novel approach for the reconstruction of animated meshes from a series of time‐deforming point clouds. Given a set of unordered point clouds that have been captured by a fast 3‐D scanner, our algorithm is able to compute coherent meshes which approximate the input data at arbitrary time instances. Our method is based on the computation of an implicit function in ?4 that approximates the time‐space surface of the time‐varying point cloud. We then use the four‐dimensional implicit function to reconstruct a polygonal model for the first time‐step. By sliding this template mesh along the time‐space surface in an as‐rigid‐as‐possible manner, we obtain reconstructions for further time‐steps which have the same connectivity as the previously extracted mesh while recovering rigid motion exactly. The resulting animated meshes allow accurate motion tracking of arbitrary points and are well suited for animation compression. We demonstrate the qualities of the proposed method by applying it to several data sets acquired by real‐time 3‐D scanners.  相似文献   

16.
Analyzing and generating sampling patterns are fundamental problems for many applications in computer graphics. Ideally, point patterns should conform to the problem at hand with spatially adaptive density and correlations. Although there exist excellent algorithms that can generate point distributions with spatially adaptive density or anisotropy, the pair‐wise correlation model, blue noise being the most common, is assumed to be constant throughout the space. Analogously, by relying on possibly modulated pair‐wise difference vectors, the analysis methods are designed to study only such spatially constant correlations. In this paper, we present the first techniques to analyze and synthesize point patterns with adaptive density and correlations. This provides a comprehensive framework for understanding and utilizing general point sampling. Starting from fundamental measures from stochastic point processes, we propose an analysis framework for general distributions, and a novel synthesis algorithm that can generate point distributions with spatio‐temporally adaptive density and correlations based on a locally stationary point process model. Our techniques also extend to general metric spaces. We illustrate the utility of the new techniques on the analysis and synthesis of real‐world distributions, image reconstruction, spatio‐temporal stippling, and geometry sampling.  相似文献   

17.
In this work we present a point classification algorithm for multi‐variate data. Our method is based on the concept of attribute subspaces, which are derived from a set of user specified attribute target values. Our classification approach enables users to visually distinguish regions of saliency through concurrent viewing of these subspaces in single images. We also allow a user to threshold the data according to a specified distance from attribute target values. Based on the degree of thresholding, the remaining data points are assigned radii of influence that are used for the final coloring. This limits the view to only those points that are most relevant, while maintaining a similar visual context.  相似文献   

18.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

19.
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.  相似文献   

20.
Current unsteady multi‐field simulation data‐sets consist of millions of data‐points. To efficiently reduce this enormous amount of information, local statistical complexity was recently introduced as a method that identifies distinctive structures using concepts from information theory. Due to high computational costs this method was so far limited to 2D data. In this paper we propose a new strategy for the computation that is substantially faster and allows for a more precise analysis. The bottleneck of the original method is the division of spatio‐temporal configurations in the field (light‐cones) into different classes of behavior. The new algorithm uses a density‐driven Voronoi tessellation for this task that more accurately captures the distribution of configurations in the sparsely sampled high‐dimensional space. The efficient computation is achieved using structures and algorithms from graph theory. The ability of the method to detect distinctive regions in 3D is illustrated using flow and weather simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号