首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diamond films were used as substrates for cubic boron nitride (c-BN) thin film deposition. The c-BN films were deposited by ion beam assisted deposition (IBAD) using a mixture of nitrogen and argon ions on diamond films. The diamond films exhibiting different values of surface roughness ranging from 16 to 200 nm (in Rrms) were deposited on Si substrates by plasma enhanced chemical vapor deposition. The microstructure of these c-BN films has been studied using in situ reflexion electron energy loss spectroscopy analyses at different primary energy values, Fourier transform infrared spectroscopy and high resolution transmission microscopy. The fraction of cubic phase in the c-BN films was depending on the roughness of the diamond surface. It was optimized in the case of the smooth surface presenting no particular geometrical effect for the incoming energetic nitrogen and argon ions during the deposition. The films showed a nanocrystalline cubic structure with columnar grains while the near surface region was sp2 bonded. The films exhibit the commonly observed layered structure of c-BN films, that is, a well textured c-BN volume lying on a h-BN basal layer with the (00.2) planes perpendicular to the substrate. The formation mechanism of c-BN films by IBAD, still involving a h-BN basal sublayer, does not depend on the substrate nature.  相似文献   

2.
Ion implantation is commonly used to modify the surface or near-surface properties of materials. In this work, plasma treated ultrananocrystalline diamond (UNCD) films were implanted using 100 and 200 keV high dose (1016 ions/cm2) nitrogen ions and annealed. Detailed studies have been carried out to reveal the structural and chemical states of the surface treated UNCD films before implantation, as-implanted, and after annealing by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron field emission (EFE) measurements. The high dose N ion implantation induced the formation of amorphous phase, which are converted into graphitic phase after annealing, and improved the field emission properties of UNCD films. The improved field emission is attributed to the surface charge transfer doping mechanism.  相似文献   

3.
Nanocrystalline diamond films were deposited on Co-cemented tungsten carbides using bias-enhanced hot filament CVD system with a mixture of acetone, H2 and Ar as the reactant gas. The effect of Ar concentration on the grain size of diamond films and diamond orientation was investigated. Nanocrystalline diamond films were characterized with field emission scan electron microscopy (FE-SEM), Atomic force microscopy (AFM), Raman spectroscopy and X-ray diffraction spectroscopy (XRD). Rockwell C indentation tests were conducted to evaluate the adhesion between diamond films and the substrates. The results demonstrated that when the Ar concentration was 90%, the diamond films exhibited rounded fine grains with an average grain size of approximately 60–80 nm. The Raman spectra showed broadened carbon peaks at 1350 cm 1 and 1580 cm 1 assigned to D and G bands and an intense broad Raman band near 1140 cm 1 attributed to trans-polyacetylene, which confirmed the presence of the nanocrystalline diamond phase. The full width at half maximum of the <111> diamond peak (0.8°) was far broader than that of conventional diamond film (0.28°–0.3°). The Ra and RMS surface roughness of the nanocrystalline diamond film were measured to be approximately 202 nm and 280 nm with 4 mm scanning length, respectively. The Ar concentration in the reactant gases played an important role in the control of grain size and surface roughness of the diamond films. Nanocrystalline diamond-coated cemented tungsten carbides with very smooth surface have excellent characteristics, which made them a promising material for the development of high performance cutting tools and wear resistance components.  相似文献   

4.
The adhesion strength and deposition behavior of diamond films with different grain size onto heat-treated WC–Co cutting tool inserts were investigated. The diamond film was deposited on WC–6%Co cutting tool inserts by the hot-filament chemical vapor deposition method, with H2/3% CH4 mixed gas. The N2 gas was incorporated in the mixed gas to refine the grain size of the deposited diamond film (nanocrystalline diamond: NCD).Pores were observed in the interface region between the micrometer-size diamond film (MCD) and the WC–Co cutting tool insert. This suggested that the growth of diamond grains on top of elongated WC grains, which was induced by heat treatment to improve the adhesion strength of the deposited film, hindered the deposition of diamond in the valley area between the elongated WC grains. By contrast, in the case of the NCD film with a grain size of less than 50 nm obtained by addition of N2 gas, no pores were observed, due to the fact that the refined diamond grains filled the interface region regardless of the existence of the elongated WC grains. The adhesion strength of the NCD film was likely to be greater than that of the MCD film on the heat-treated WC–Co cutting tool insert, which was explained by the full coverage with small diamond grains at the rough interface region.  相似文献   

5.
《Ceramics International》2017,43(13):9759-9768
Fabrication of highly conductive and transparent TiO2/Ag/TiO2 (referred hereafter as TAT) multilayer films with nitrogen implantation is reported. In the present work, TAT films were fabricated with a total thickness of 100 nm by sputtering on glass substrates at room temperature. The as-deposited films were implanted with 40 keV N ions for different fluences (1×1014, 5×1014, 1×1015, 5×1015 and 1×1016 ions/cm2). The objective of this study was to investigate the effect of N+ implantation on the optical and electrical properties of TAT multilayer films. X-ray diffraction of TAT films shows an amorphous TiO2 film with a crystalline peak assigned to Ag (111) diffraction plane. The surface morphology studied by atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) revealed smooth and uniform top layer of the sandwich structure. The surface roughness of pristine film was 1.7 nm which increases to 2.34 nm on implantation for 1×1014 ions/cm2 fluence. Beyond this fluence, the roughness decreases. The oxide/metal/oxide structure exhibits an average transmittance ~80% for pristine and ~70% for the implanted film at fluence of 1×1016 ions/cm2 in the visible region. The electrical resistivity of the pristine sample was obtained as 2.04×10−4 Ω cm which is minimized to 9.62×10−5 Ω cm at highest fluence. Sheet resistance of TAT films decreased from 20.4 to 9.62 Ω/□ with an increase in fluence. Electrical and optical parameters such as carrier concentration, carrier mobility, absorption coefficient, band gap, refractive index and extinction coefficient have been calculated for the pristine and implanted films to assess the performance of films. The TAT multilayer film with fluence of 1×1016 ions/cm2 showed maximum Haacke figure of merit (FOM) of 5.7×10−3 Ω−1. X-ray photoelectron spectroscopy (XPS) analysis of N 1s and Ti 2p spectra revealed that substitutional implantation of nitrogen into the TiO2 lattice added new electronic states just above the valence band which is responsible for the narrowing of band gap resulting in the enhancement in electrical conductivity. This study reports that fabrication of multilayer transparent conducting electrode with nitrogen implantation that exhibits superior electrical and optical properties and hence can be an alternative to indium tin oxide (ITO) for futuristic TCE applications in optoelectronic devices.  相似文献   

6.
Chen-Hao Ku 《Carbon》2004,42(11):2201-2205
The effect of CCl4 concentration on the nanocrystalline diamond (NCD) films deposition has been investigated in a hot-filament chemical vapor deposition (HFCVD) reactor. NCD films with a thickness of few-hundred nanometers have been synthesized on Si substrates from 2.0% and 2.5% CCl4/H2 at a substrate temperature of 610 °C. Polycrystalline diamond films and nanowall-like films with higher formation rates than those of the NCD films were deposited from lower and higher CCl4 concentrations, respectively. The grain sizes of the diamond film grown using 2.0% CCl4 increased with film thickness while a diamond film with uniform nanocrystalline structure all over a thickness of 1 μm can be deposited in the case of 2.5% CCl4. We suggest that both the primary nucleation and the secondary nucleation processes are crucial for the growth of the NCD films on Si substrates.  相似文献   

7.
We compare structural and optical properties of microcrystalline and nanocrystalline diamond (MCD and NCD, respectively) films grown on mirror polished Si(100) substrates by microwave plasma chemical vapor deposition. The films were characterized by SEM, Raman spectroscopy, XRD, and AFM. Optical properties were obtained from transmittance and reflectance measurements of the samples in the wavelength range of 200–2000 nm. Raman spectrum of the MCD film exhibits a strong and sharp peak near 1335 cm−1, an unambiguous signature of cubic crystalline diamond with weak non-diamond carbon bands. Along with broad non-diamond carbon bands, Raman spectra of NCD films show features near 1140 cm−1, the intensity of which is significantly higher in the film grown at 600°C compared to the NCD film grown at higher temperature. The Raman feature near 1140 cm−1 is related to the calculated phonon density of states of diamond and has been assigned to nanocrystalline or amorphous phase of diamond. XRD patterns of the MCD film show sharp peaks and NCD films show broad features, corresponding to cubic diamond. The rms surface roughness of the films was observed to be approximately 60 nm for MCD film that reduced substantially to 17 and 34 nm in the NCD films grown at 600 and 700°C, respectively. Tauc's optical gap for the diamond film is found to be approximately 5.5 eV. NCD grown at 700°C has a high optical absorption coefficient in the whole spectral region and the NCD film grown at 600°C shows very high transmittance (∼78%) in the near IR region, which is close to that of diamond. This indicates that the NCD film grown at 600°C has the potential for applications as optical windows since its surface roughness is significantly low as compared to the MCD film.  相似文献   

8.
《Diamond and Related Materials》2001,10(9-10):1588-1591
Diamond is one of the most valuable materials for the industrial applications because of its excellent properties including high hardness, with good electrical insulation and thermal conductivity. Mechanical polishing processes of diamond are difficult and very costly. To limit those costs, it is reasonable to think that the surface roughness of the as-grown diamond film should be as small as possible. In this study, a nanocrystalline diamond film was synthesized on a 4-inch Si wafer at 923 K and methane concentration of 10 vol.%, (H2/CH4=100/10 sccm) using a microwave plasma CVD system. In order to increase the nucleation density, the substrate was pretreated by dry scratch method with diamond powder of two sizes (250 nm and 5 nm). The nucleation density was approximately 1×1011 cm−2. The grown diamond films were analyzed by Raman spectroscopy and X-ray diffraction (XRD). The grain size was observed to be approximately 10 nm by FE-SEM observation. Surface roughness was measured as Rms=8.4 nm by atomic force microscope (AFM). The as-grown properties of those nanocrystalline diamond films were almost efficient for tribological and the optical applications.  相似文献   

9.
Smooth nanocrystalline diamond thin films with rms surface roughness of ∼17 nm were grown on silicon substrates at 600°C using biased enhanced growth (BEG) in microwave plasma chemical vapor deposition (MPCVD). The evidence of nanocrystallinity, smoothness and purity was obtained by characterizing the samples with a combination of Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy and Auger electron spectroscopy. The Raman spectra of the films exhibit an intense band near 1150 cm−1 along with graphitic bands. The former Raman band indicates the presence of nanocrystalline diamond. XRD patterns of the films show broad peaks corresponding to inter-planar spacing of (111) and (220) planes of cubic diamond supporting the Raman results. Auger line shapes closely match with the line shape of diamond suggesting high concentration of sp3 carbon on the surfaces of the films. The growth of dominantly sp3 carbon by BEG in the MPCVD system at the conditions used in the present work can be explained by the subsurface implantation mechanism while considering some additional effects from the high concentration of atomic hydrogen in the system.  相似文献   

10.
We have studied B ion implantation at 400 °C into undoped homoepitaxial chemical vapor deposition diamond films and high-pressure and high-temperature (HPHT) synthetic IIa substrates. The highest Hall mobility at room temperature is 268 cm2/Vs among B implanted homoepitaxial films, while it is 38 cm2/Vs for the B implanted HPHT synthetic IIa substrate. The present result reveals that the quality of a doped layer is strongly dependent upon that of a diamond substrate employed for ion implantation.  相似文献   

11.
CH4–CO2 microwave plasmas have been studied by optical emission spectroscopy, microwave interferometry, Langmuir probing and molecular beam mass spectrometry. The variations of plasma parameters and the concentration variations of both stable species and radicals in the plasma had been reported previously as a function of the power density; the influence of the total inlet flow rate is reported here. While the power density influences directly the plasma kinetics, the flow rate changes the residence time in the plasma and then the degree of conversion of the chemical system that is the extent to which the gas composition moves toward its steady-state composition. This is studied by modelling of plasma kinetics taking into account the coupled fluid dynamics of the gaseous species and the gas-phase chemistry including electron dissociation and surface recombination at the reactor wall. The experimental and modelling studies are used for correlating: – the relative concentration of important hydrocarbon radicals and etching radicals in the plasma and the gradients of all these species in front of the surface; – to the deposition domain, the structure (polycrystalline or nanocrystalline) and the quality of diamond films, which is the ratio of sp3 to (sp3 + sp2)-hybridized carbon in the film. All results evidence the plasma kinetic effect on the diamond deposition domain and the diamond deposition quality and structure, due to different degrees of conversion of the chemical system. The deposition of diamond coating from CH4–CO2 is shown to be a versatile process that permits deposition of a great variety of diamond films. However it requires particular attention because of the variation of the deposition conditions and then diamond quality and structure of the deposits depending on the extent of conversion of the inlet species to various intermediate and finally stable species formed in the plasma chemical system.  相似文献   

12.
It is confirmed that a small amount of nitrogen incorporated into chemical vapor deposited diamond films dramatically affects their electrical properties. Nitrogen can be incorporated into diamond films through the leak of vacuum system and/or from the impurity in source gases. Because a nitrogen atom can be a deep donor in diamond crystal, the p-type semiconducting properties of boron doped diamond films can be degraded even by the small amount of nitrogen. The small amount of nitrogen in chemical vapor deposited diamond films was measured by cathodoluminescence spectroscopy. For the detection of nitrogen, the N–V center was intentionally induced by defect formation through ion beam irradiation and subsequent annealing. The luminescence intensity of the N–V center was decreased by reducing the leak of the vacuum system and by upgrading the purity of the source gases. Both the carrier density and the Hall mobility of the boron doped diamond films were successfully improved by the control of nitrogen contamination. Using extremely high pure CH4, H2 and B2H6 in a tightly sealed vacuum system, the total amount of nitrogen impurity in the source gas was controlled to <80 ppm in the N/C atomic ratio resulting in a Hall mobility of 1600 cm2/Vs with a hole concentration of >1014 cm−3 at the room temperature in a 10-ppm-boron doped homoepitaxial diamond film.  相似文献   

13.
We previously reported nanocarbon films formed by the electron cyclotron resonance (ECR) sputtering method. The films contain a nanocrystalline structure consisting of sp3 and sp2 bonds with an extremely flat surface (Ra = 0.07 nm). The film also has a wider potential window than glassy carbon and superior electrochemical activity to boron doped diamond for certain species. However, ECR sputtering equipment is much more expensive than that used for conventional sputtering and requires a ring-shaped target. Therefore, it is difficult to use this method to develop new electrode materials such as metal-carbon hybrid film. Here, we describe a nanocarbon film electrode that we developed with a potential window and electrochemical activity equivalent to those of ECR nanocarbon films by using unbalanced magnetron (UBM) sputtering equipment. Our approach uses conventional equipment and has widely controllable sputtering conditions including a high sputtering rate, a large sputtering area and the capacity for co-sputtering multiple materials. The film can contain a maximum of 53% sp3 bonds by increasing the substrate bias voltage between the target and substrate, and also exhibits a potential window equivalent to that of the ECR nanocarbon film. However, the electrode surface is about one order of magnitude rougher than that of the ECR nanocarbon film due to the effect of reflected Ar+ ions caused by the fact that the target surface is facing the substrate surface. By employing transmission electron microscopy, we could observe nanocrystalline graphene structures in the UBM nanocarbon film, which are difficult to observe in conventional diamond-like carbon film. The electron transfer rate at the UBM nanocarbon film is similar to those of ECR nanocarbon film for Ru(NH3)63 + and Fe(CN)64 , suggesting that the nanocrystalline structure could contribute to a relatively fast electron transfer rate. The UBM nanocarbon films were successfully used for detecting kynurenic acid, which has a high oxidation potential and is difficult to detect with a conventional glassy carbon electrode.  相似文献   

14.
We show correlation of microscopic surface quality and morphology of nanocrystalline diamond films as a function of deposition temperature and post-growth acid treatment detected by atomic force microscopy in phase detection regime, X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy, Scanning Electron Microscopy, Raman spectroscopy, and the electrical conductivity of H-terminated diamond surfaces. The correlation reflects the decrease in sp2 amount and enhanced surface conductivity of the diamond surface after the chemical treatment. These results indicate that the AFM phase can detect clearly and microscopically carbon sp2 phase on facets and grain boundaries of nanocrystalline diamond films.  相似文献   

15.
The structural and electronic properties of nanocrystalline diamond films synthesized by a modified hot-filament chemical vapour deposition process were investigated by both bulk- and surface-sensitive techniques. Diffraction and microscopy data show the films to consist of diamond grains with an average crystallite size of about 10–15 nm and a root-mean-square roughness of similar size. Carbon core-level excitations in transmission electron energy-loss spectroscopy reveal an sp2 content below 5%. The low energy loss spectra are quite similar to that of diamond crystal. The high sp3 content in the films was also confirmed by C 1s photoelectron plasmon energy loss features in X-ray photoemission experiments and by X-ray excited Auger-electron spectroscopy. We find that the hydrogen covered diamond surface gets contaminated after storage for several months under ambient conditions. Heating up to 500°C in vacuo is required to desorb the adsorbate layer.  相似文献   

16.
Diamond thin films were deposited on silicon in gas mixtures of methane and hydrogen with different methane concentrations ranging from 1% to 100% using microwave plasma assisted chemical vapor deposition. Both Raman spectroscopy and synchrotron near edge extended X-ray absorption fine structure spectroscopy (NEXAFS) were used to characterize the electronic structure and chemical bonding of the synthesized films. The NEXAFS spectra of the nanocrystalline diamond (NCD) films exhibit clear spectral characteristics of diamond. Close observation reveals that the films (10% CH4 or above) exhibit a slightly broadened exciton transition with a 0.25 eV blue shift. With the increase in methane concentration, the growth rate, the surface smoothness, and the sp2 carbon concentration of the films increase while the grain size decreases. Well-faceted microcrystalline diamond films were synthesized with a methane concentration of 5% or lower, while NCD films were formed with a methane concentration of 10% or higher. Diamond thin films with low surface roughness and fine nanocrystalline structure have been synthesized with high methane concentrations (50% or above). It has been observed that the diamond growth rate increases with methane concentration. The growth rate at 100% methane concentration is approximately 10 times higher than at 1%.  相似文献   

17.
The mechanical and frictional properties of hydrogen- and oxygen-terminated nanocrystalline diamond films (NCD) grown by hot-filament chemical vapor deposition (HFCVD) have been investigated in the present work.The structure and morphology of the NCD films have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman-effect spectroscopy. In addition, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) have been used to investigate the surface chemical groups on the NCD surface. Mechanical and frictional properties are determined using atomic force microscopy (AFM), nano-indentation, nano-scratching and micro-tribometer. The friction behavior of these films in the load range of 25 to 200 mN under reciprocating sliding conditions, using steel counter-body material has been thoroughly studied.It is noted that these films are highly crystalline with nanometer size grains and contain a very high fraction of sp3 carbon bonds. They exhibit high hardness and high elastic modulus. The friction coefficient of the film is lower under unidirectional scratch with diamond indenter than the friction coefficient under low load reciprocating sliding against steel ball. Transfer of the film from the counter-body, oxidation of transfer film and mixing of transfer film with carbonaceous layer on the worn surfaces are responsible for such behavior. Although, the friction responses of H-terminated and O-terminated films are similar under unidirectional scratch with diamond indenter, the friction coefficient of O-terminated film is always higher than the friction coefficient of H-terminated film under reciprocating sliding condition against steel counter-body material.  相似文献   

18.
A study of the evolution of morphology of diamond films grown as a function of N2 gas additions to the CH4+H2 precursor in an HF-CVD system is presented. With the increase of admixture of N2 fraction, in contrast to earlier studies, the morphology was observed first to gradually change from {111}-faceted crystallites texture to that of an intermediate cubo-octahedral crystallite texture and then gradually but finally to transform completely into that of {100}-faceted crystallites. The threshold nitrogen concentration, [N2]thr, required to bring about the said transition in morphology was much larger than it was reported previously. Moreover, the morphology transition required a larger [N2]thr when a large fraction of methane was employed. Further additions of nitrogen, that just exceeded the [N2]thr, resulted in growth of films containing slightly bigger {100}-multi-layered grains or isolated planar {100}-platelets. For extremely large nitrogen additions, the growth of nanocrystalline or amorphous carbon films was observed. The N2 additions more than 50 vol.% did not yield any deposition. Raman scattering and photoluminescence measurements were used respectively for characterizing the quality and nitrogen doping in the films. These results are attributed to the possible catalytic role of atomic nitrogen at the growing surface.  相似文献   

19.
The new piezoelectric crystal langasite (La3Ga5SiO14; abbreviated as LGS) that presents a high chemical stability at high temperature is investigated as substrate for the new layered structure Diamond/LGS surface acoustic wave (SAW) devices. Theoretical study was performed in order to calculate the evolution, as a function of diamond film thickness, of phase velocity and electromechanical coupling coefficient (K2) of the Rayleigh mode and its higher modes. The calculation results show that phase velocity up to 12 000 m/s and up to 9500 m/s are obtained respectively for the mode 2 and mode 1, while the mode 0 exhibits high K2 values up to 2.9%. Experimental study was focused on the deposition of nanocrystalline diamond films on LGS substrate. First attempts show that good nanocrystalline properties may be obtained in Ar/H2/CH4 microwave discharges.  相似文献   

20.
Boron-doped nanocrystalline diamond (BDND) films were deposited on Si(100) by microwave plasma chemical vapor deposition using trimethyl boron as boron source. The surface morphology, microstructure, and electrochemical properties of the BDND films were investigated. Cyclic voltammograms indicated that the BDND film electrode exhibited good reversibility and repeatability of electrode reaction using [Fe(CN)6]3?/4? as redox couple. The non-enzymatic glucose sensor based on the as-prepared BDND film electrode without any modification was developed, and the selective detection of glucose in alkaline solution containing interference species of ascorbic acid and uric acid was demonstrated. The results showed that glucose can be directly oxidized with a wide linear range and high sensitivity, and selectively detected in the presence of uric acid and ascorbic acid in alkaline solution using the as-prepared BDND film electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号