首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Jonasz M  Fournier G  Stramski D 《Applied optics》1997,36(18):4214-4225
Photometric immersion refractometry is a technique for determining the refractive index of particulate material. In this technique, the attenuation of light by a suspension of particles is measured as a function of the refractive index of the immersion medium. A minimum attenuation occurs at the refractive index of the medium equal to that of the particles. This technique can serve as a benchmark method for the refractive index determination because it is independent of assumptions invoked by other techniques, such as those based on the inversion of the spectral attenuation data. We present a rigorous model of the photometric immersion refractometry based on the anomalous diffraction approximation for the attenuation efficiency of particles. This model permits one to determine the average value of the real part of the refractive index of the particles, its variance, and the average imaginary part of the refractive index of the particles. In addition, the fourth moment of the particle size distribution can be determined if the concentration and shape of the particles are known. We analyze the sensitivity of this model to experimental errors and discuss the applicability of photometric immersion refractometry to marine microbial particles. We also present experimental results of this technique as applied to heterotrophic marine bacteria. The results indicate that the refractive index of these bacteria was narrowly distributed about the average value of 1.3886.  相似文献   

2.
A new method for particle size determination in polystyrene and aluminum hydroxide suspensions using near-infrared transmittance spectroscopy is described. Mono-dispersed polystyrene particle size standards were used to establish the calibration model. The particle sizes used in the study are similar to the wavelength range of 700-1300 nm, where light scattering is wavelength dependent. The wavelength dependency of near-infrared (NIR) absorbance is found to be linear with the particle size when the analysis is based on the same spectrum starting point (the same absorbance at 700 nm). Partial least squares regression (PLSR) is applied to model this linear relationship. Compared to laser diffraction (LD) the NIR method has similar accuracy and precision in the measurement of particles with a uniform size. For a sample containing multiple sizes of particles, the mean size measured by the NIR method is shown to be weighted by the particle mass. The application of the model to aluminum hydroxide suspension shows that the NIR method is suitable for the detection of particle size changes during the production process and storage. The advantages of the NIR method are that no knowledge of the refractive index and the concentration of a sample are necessary and that the method is fast and easy to operate.  相似文献   

3.
Zhou J  Moshary F  Gross B  Ahmed S 《Applied optics》2006,45(26):6876-6885
The Twomey iterative method has been applied to the retrieval of hydrosol microphysical properties. In particular, we focused on the retrieval of single and multimode particle size distributions from both simulated and experimental backscattering spectra in the 400-800 nm wavelength range. Assuming a known refractive index, both single-mode and multimode distributions were successfully retrieved through the introduction of an initial distribution biased toward larger particles. The simulation results were experimentally verified with standard polystyrene particles suspended in water within the diameter range of 0.2-2 microm for both narrow and broad monomodal distributions as well as more complicated multimode distributions. Finally, the technique was extended to the retrieval of an unknown refractive index.  相似文献   

4.
A systematic evaluation of the effects of polydispersity of chainlike aggregates in terms of primary particle number density and size on the scattering quantities and data inversion is presented. For aggregates with refractive index in the range absolute value(m-1) = 0.8-1.2, average size parameter x < 0.40, and primary particle number Np < 20, it is shown that the effects of polydispersity of primary particle size on the light-scattering quantities are much stronger than the polydispersity of the number of primary particles per aggregate. For aggregates with polydisperse primary particle size, the assumption of monodispersity tends to underestimate the real and imaginary parts of the refractive index and the number of primary particles. Specifically, for values of the distribution width sigma greater than 0.10, the effect of polydispersity of the size of primary particles must be considered in the data inversion schemes. Furthermore, in the same range of values for the refractive index, particle size parameter, and primary particle number, the assumption of monodispersity for aggregates with polydisperse particle number tends to underestimate the value of the real part of the refractive index and overestimate the value of the imaginary part of the refractive index and primary particle size. However, for values of the distribution width sigma less than 0.60, the effects of polydispersity of primary particle number can be neglected. In addition, the suitable pairing sets of the measured scattering quantities for data inversion are presented and discussed.  相似文献   

5.
In this study, a rapid and accurate particle size determination method using a light-scattering particle size analyzer was developed to measure the particle size and size distribution of a suspension containing three solid components: clotrimazole, triamcinolone, and sarafloxacin, which have different refractive indices. To ensure that data represent the size distribution of the primary particles of the suspension, the optimal sonication prior to and during measurement was detemined. It was found that the results obtained using the average relative refractive index (RRI) of the three components agreed with the results obtained using three individual RRIs. In addition, the results from two analysts demonstrated good reproducibility of this method. The size distribution data of the suspension were also compared to those of the bulk drugs. The results showed that the median particle size of this three-component suspension is relatively close to that of clotrimazole, which accounts for 80% of solid particles in the suspension. Furthermore, the results obtained using the light-scattering technique were comparable to those obtained using a polarized light microscope equipped with an image analyzer, indicating acceptable accuracy of this technique.  相似文献   

6.
In this study, a rapid and accurate particle size determination method using a light-scattering particle size analyzer was developed to measure the particle size and size distribution of a suspension containing three solid components: clotrimazole, triamcinolone, and sarafloxacin, which have different refractive indices. To ensure that data represent the size distribution of the primary particles of the suspension, the optimal sonication prior to and during measurement was determined. It was found that the results obtained using the average relative refractive index (RRI) of the three components agreed with the results obtained using three individual RRIs. In addition, the results from two analysts demonstrated good reproducibility of this method. The size distribution data of the suspension were also compared to those of the bulk drugs. The results showed that the median particle size of this three-component suspension is relatively close to that of clotrimazole, which accounts for 80% of solid particles in the suspension. Furthermore, the results obtained using the light-scattering technique were comparable to those obtained using a polarized light microscope equipped with an image analyzer, indicating acceptable accuracy of this technique.  相似文献   

7.
采用T矩阵方法计算亚微米级扁椭球随机取向分布颗粒群的散射特性,研究消光截面、散射截面、吸光截面、单散射反照率、非对称因子以及散射矩阵元素与颗粒的大小、折射率、长短轴比之间的关系。结果表明,随颗粒粒径增大,消光截面、散射截面、吸光截面、非对称因子都单调增加,散射相函数F11的角分布曲线特征可以区分颗粒的大小;颗粒越偏离球形,颗粒对入射光的衰减效率越低,后向散射光强越强,在轴比不大时,前向50°内的F22/F11值可以区分颗粒的形状;折射率变化主要是对后向散射光的分布产生影响,实部、虚部的变化可分别通过F34/F11的角分布曲线、F12/F11的第一个峰值来体现。  相似文献   

8.
A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.  相似文献   

9.
Woźniak SB  Stramski D 《Applied optics》2004,43(17):3489-3503
The optical properties of mineral particles suspended in seawater were calculated from the Mie scattering theory for different size distributions and complex refractive indices of the particles. The ratio of the spectral backscattering coefficient to the sum of the spectral absorption and backscattering coefficients of seawater, b(b)(lambda)/[a(lambda) + b(b)(lambda)], was analyzed as a proxy for ocean reflectance for varying properties and concentrations of mineral particles. Given the plausible range of variability in the particle size distribution and the refractive index, the general parameterizations of the absorption and scattering properties of mineral particles and their effects on ocean reflectance in terms of particle mass concentration alone are inadequate. The variations in the particle size distribution and the refractive index must be taken into account. The errors in chlorophyll estimation obtained from the remote sensing algorithms that are due to the presence of mineral particles can be very large. For example, when the mineral concentration is 1 g m(-3) and the chlorophyll a concentration is low (0.05 mg m(-3)), current global algorithms based on a blue-to-green reflectance ratio can produce a chlorophyll overestimation ranging from approximately 50% to as much as 20-fold.  相似文献   

10.
Erlick C  Haspel M  Rudich Y 《Applied optics》2011,50(22):4393-4402
Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative "temperature" schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.  相似文献   

11.
Stramski D  Sedlák M 《Applied optics》1994,33(21):4825-4834
Small particles ranging from approximately 0.1 μm to several micrometers in size, which include detrital material, bacteria, and other planktonic microorganisms, make a significant contribution to light scattering in the upper ocean. The scattering properties of these particles are strongly dependent on their size, which is difficult to measure in the submicrometer range with commonly used electronic resistive counters and microscopic techniques. We examined the size of small marine particles by application of the dynamic light scattering (DLS) method. In this method the time-dependent autocorrelation function of scattered intensity by particles undergoing Brownian motion provides information about the size of particles. The samples were collected in clear oceanic waters off the coast of Southern California. The mean hydrodynamic diameter of particles, determined from the DLS measurements at a scattering angle of 45°, was 0.54μ m. This indicates that the major contribution to scattering at this angle comes rom submicrometer particles. We also described an inverse method for estimating the general slope of the size distribution of small marine particles from the mean hydrodynamic diameter. This method is based on calculations of the size distribution weighted by distribution from Mie theory and assumes that a power-law approximation represents the actual particle scattered intensity. These calculations suggested that particulate assemblage in our seawater samples was best characterized by a differential size distribution with a slope of -4.35. This estimation was supported by independent measurements of particle size distribution and the spectral beam attenuation coefficient taken from the same samples as those used for the DLS measurements. We also demonstrated that multiangle DLS measurements may be used to determine the representative value of the refractive index of particles.  相似文献   

12.
Abstract

A knowledge of the local refractive index variations and size distribution of scatterers in biological tissue is required to understand the physical processes involved in light-tissue interaction. This paper describes a method for modelling the complicated soft tissue, based on the fractal approach, permitting numerical evaluation of the phase functions and four optical properties of tissue—scattering coefficient, reduced scattering coefficient, backscatter-ing coefficient, and anisotropy factor—by the use of the Mie scattering theory. A key assumption of the model is that refractive index variations caused by microscopic tissue elements can be treated as particles with size distribution according to the power law. The model parameters, such as refractive index, incident wavelength, and fractal dimension, that are likely to affect the predictions of optical properties are investigated. The results suggest that the fractal dimension used to describe how biological tissue can be approximated by particle distribution is highly dependent on how the continuous distribution is discretized. The optical properties of the tissue significantly depend on the refractive index of tissue, implying that the refractive index of the particles should be carefully chosen in the model in order accurately to predict the optical properties of the tissue concerned.  相似文献   

13.
采用溶胶-凝胶工艺在碱催化条件下制备了多孔结构的纳米SiO2薄膜,研究了不同醇硅比对溶胶体系的粒度分布、薄膜折射率以及透过率的影响。用纳米粒度分析仪测试了溶胶的颗粒分布,用紫外-可见-近红外分光光度计、椭偏仪、原子力显微镜(AFM)、扫描电子显微镜(SEM)测试了薄膜的光学性能、折射率、膜厚和显微形貌等。结果表明:随着醇硅比的增大,溶胶体系粘度下降,凝胶时间延长,颗粒度下降,折射率有升高的趋势;制备的增透玻璃膜层折射率为1.24,可见光透过率达到98.22%。  相似文献   

14.
A simple method for determining the mean size, the concentration, and the refractive index of the monodispersion and the polydispersion of particles has been presented. The method is based on the empirical inversion of measurements of forward-angle light-scattering transmittance. The effects of particle size distribution and optical constants on forward-angle-scattering transmittance have been considered by using Mie theory. The proposed method has been used successfully for single latex spheres in water and polydispersed weakly absorbing particles of Al(2) O(3) and SiO(2) in the flow of the propane-air flame combustion products.  相似文献   

15.
In order to confirm the reliability of particle size measurement technique and to prepare standard reference particles for calibrating particle size measurement devices, experimental and theoretical studies have been conducted about the uncertainty region of particle size measurement for the general particle size distribution. A new theoretical equation to calculate fundamental uncertainty region in the case that the maximum and minimum particle sizes are known, is derived based on Tschebyscheff theory. The uncertainty regions calculated based on the proposed method are applied to poly-disperse particles and a picket-fence distribution composed of two kinds of nearly mono-disperse particles.For the poly-disperse particles, the uncertainty region increases with the increase in particle diameter. For the picket-fence distribution composed of two kinds of nearly mono-disperse particles, the uncertainty region increases around the intermediate particle diameters between the two kinds of particles.Numerical simulation of uncertainty region for the picket-fence distribution has also been carried out. The uncertainty region decreases with the increase in sample size or the decrease in geometric standard deviation.  相似文献   

16.
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.  相似文献   

17.
The transparency of metal oxide containing polymeric composites was correlated to its filler transparency using a new method based on light microscopy analysis. Filler particles were pressed into filler tablets from which fragments were submerged in different refractive index liquids. Transparencies of different particulate materials with diameters from 0.007 to 1.5 μm were investigated. The transparencies depended on light absorption of the solid, filler particle size and refractive index mismatch of filler and liquid. A correlation between filler transparency and the transparency of filler containing polymers (composites) was established. The method allows to predict the composite transparency for any filler particle size and any filler particle/polymer refractive index mismatch. Manufacturing-caused, batch-wise quality differences in transparency of the same filler material showed similar transparency trends for filler/liquid and filler/polymer transparencies when no quantitative difference was found by nitrogen adsorption, XRD, DRUV–Vis, DRIFTS and SEM analysis.  相似文献   

18.
Hu H  Li X  Zhang Y  Li T 《Applied optics》2006,45(16):3864-3870
A method is presented for inferring both the refractive index and the size distribution of aerosol from observations of a dual-scattering-angle optical particle counter (OPC). An existing prototype of an OPC with 60 degree and 90 degree dual-scattering angles was used for the experiments. Based on the high sensitivity of the OPC response to the refractive index of particulates, two families of size distribution curves may be calculated. The solution of the refractive index corresponds to the superposition of the two size distributions. This method was applied to the simulation and to the field measurements conducted in Beijing and Hefei, and the results of both are presented.  相似文献   

19.
A Fourier transform was applied to size an individual spherical particle from an angular light-scattering pattern. The position of the peak in the amplitude spectrum has a strong correlation with the particle size. A linear equation retrieved from regression analysis of theoretically simulated patterns provides a relation between the particle size and the location of the amplitude spectrum's peak. The equation can be successfully applied to characterize particles of size parameters that range from 8 to 180 (corresponding to particle sizes that range from 1.2 to 27.2 microm at a wavelength of 0.633 microm). The precision of particle sizing depends on the refractive index and reaches a value of 60 nm within refractive-index region from 1.35 to 1.70. We have analyzed four samples of polystyrene microspheres with mean diameters of 1.9, 2.6, 3.0, and 4.2 microm and a sample of isovolumetrically sphered erythrocytes with a scanning flow cytometer to compare the accuracy of our new method with that of others.  相似文献   

20.
There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30–40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, d h , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the d h were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号