首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Network coding (NC) is a technique that allows intermediate nodes to combine the received packets from multiple links and forwarded to subsequent nodes. Compared with pure relaying, using NC in a wireless network, one can potentially improve the network throughput, but it increases the complexity of resource allocations as the quality of one transmission is often affected by the transmission conditions of multiple links. In this paper, we consider an ad hoc network, where all the links have bidirectional communications, and a relay node forwards traffic between the source and the destination nodes using NC. All transmissions share the same frequency channel, and simultaneous transmissions cause interference to each other. We consider both digital NC and analog NC strategies, referred to as DNC and ANC, respectively, and schedule transmission time and power of the nodes in order to maximize the overall network throughput. For DNC, an optimum scheduling is formulated and solved by assuming that a central controller is available to collect all the link gain information and make the scheduling decisions. Distributed scheduling schemes are proposed for networks using DNC and ANC. Our results indicate that the proposed scheduling scheme for DNC achieves higher throughput than pure relaying, and the scheduling scheme for ANC can achieve higher throughput than both DNC and pure relaying under certain conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we study packet transmission scheduling for a network with bidirectional relaying links, where the relay station can use network coding to combine packets to multiple receivers and opportunistically decide the number of packets to be combined in each transmission. Two cases are considered, depending on whether nodes are allowed to overhear transmissions of each other. A constrained Markov decision process is first formulated with an objective to minimize the average delay of packet transmissions, subject to the maximum and average transmission power limits of the relay node. The complexity for solving the constrained Markov decision process (MDP) is prohibitively high, although the computational complexity for the no‐overhearing case can be greatly reduced. Heuristic schemes are then proposed, one applies to the general case, and another applies to only the no‐overhearing case. Numerical results demonstrate that the heuristic schemes can achieve close‐to‐optimum average packet transmission delay, and furthermore, the second scheme achieves lower maximum delay while keeping the same average packet transmission delay and relay node power consumption as the first one. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
现有多中继无线网络中传输调度方案主要针对单信源且转发链路状态相同的情况,多采用顺序转发的调度方式,传输效率较低。针对此问题,该文提出一种基于随机线性网络编码的优先级调度方案。该方案在不同的传输阶段,利用信息包接收状态或编码向量之间的线性关系生成反馈信息,计算中继节点的有效信息包数。在转发链路状态不同的情况下,综合考虑各中继节点的有效信息与链路传输可靠性,确定优先级,从而完成调度。该方案实现了多中继对多信源信息的协同转发,在转发链路状态差异较大时,能自适应地选择最优转发节点和路径,提高信息包的传输成功率。仿真结果表明,相比传统基于单信源或顺序调度的方案,该方案能有效提高网络吞吐量,减少重传次数。  相似文献   

4.
In wireless two‐way relay systems, it is difficult to achieve perfect timing synchronization among different nodes. In this paper, we investigate relaying protocol design and data detect schemes for asynchronous two‐way relaying systems to combat the intersymbol interference caused by asynchronous transmission. We consider fractional asynchronous delays and two schemes are proposed based on cyclic prefixed single carrier block transmission, namely, the receiver frequency domain equalization scheme and relay synchronization and network coding (RSNC) scheme. In the receiver frequency domain equalization scheme, the relay simply amplifies the received signal and forwards to the two source nodes, and fractionally spaced frequency domain equalizer (FS‐FDE) is employed at the receiver to recover the transmit data. In the RSNC scheme, the asynchronous signals are resynchronized with an FS‐FDE at the relay node. The output signals of FS‐FDE are then demodulated and network coded before forwarding to the two source nodes. In this RSNC scheme, data detection at the source nodes is the same as that in synchronous networks because the asynchronous signals have already been synchronized at the relay node. Simulation results show that the performance of both schemes is almost the same as in the perfect synchronized two‐way relaying systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we first investigate the effect of mobility via the random waypoint (RWP) mobility model on the performance of nonaccess point (non‐AP) or AP large intelligent surfaces (LISs). The theoretical average bit error probability (ABEP) for each of these LISs under mobility is formulated. The presented formulation is complicated to solve; hence, the trapezoidal approximation is employed. Simulation results serve to validate the ABEP. Second, we investigate a two‐way relaying (TWR) network assisted by non‐AP or AP LISs. A network with two source/destination nodes with a single relay node employing decode‐and‐forward placed between these nodes is considered. The transmission interval is broken into two transmission phases. In the first phase, the two source nodes transmit information blocks to the relay node assisted by LISs. On receiving these information blocks, the relay node decodes the two information blocks and encodes these into a single information block via the use of network coding. In the second phase, the relay node forwards the network‐coded information block to the destination nodes assisted by LISs, where the intended information block is decoded via network coding. The theoretical ABEP is formulated for the proposed non‐AP and AP LIS‐assisted TWR schemes and is validated by simulation results. RWP mobility is also demonstrated for the proposed TWR schemes.  相似文献   

6.
In this paper, we investigate the problem of optimal reliable relay selection in multiuser cooperative wireless networks in the presence of malicious relay nodes. A general discrete time queueing model for such networks is introduced which takes into account the dynamic variations of the channel state, the dynamic malicious behaviour of relay nodes as well as stochastic arrival of data packets into the system. The model consists of a set of mobile users, one destination node and a set of relay nodes which may be either mobile or fixed. The system uses the benefit of cooperative diversity by relaying in the decode and forward mode. We assume that each user either transmits its packets directly to the destination (direct mode) or transmits them with the cooperation of a selected relay node (cooperative mode). It is assumed that a centralized network controller manages the relay selection process in the system. At each time slot, a malicious relay node in the system may behave spitefully and refuse to cooperate with a user deliberately when it is selected to cooperate with that user. A malicious relay node usually acts stochastically to hide its malicious behaviour for longer time. In such a system, at each time slot the network controller should decide whether a user has to cooperate with any relay node or not and if so, which relay node must be selected for cooperation. First, we show that the malicious behaviour of relay nodes makes the stable throughput region shrink. Then, we propose a throughput optimal secure relay selection policy that can stabilize the system for all the arrival rate vectors strictly inside the network stability region. We show that the optimal policy is equivalent to finding the maximum weighted matching in a weighted bipartite graph at each time slot. Finally, we use simulations to compare the performance of the proposed policy with that of four other sub-optimal policies in terms of average queue occupancy (or queueing delay).  相似文献   

7.
Co‐channel interference seriously influences the throughput of a wireless mesh network. This study proposes an end‐to‐end channel allocation scheme (EECAS) that extends the radio‐frequency‐slot method to minimize co‐channel interference. The EECAS first separates the transmission and reception of packets into two channels. This scheme can then classify the state of each radio‐frequency‐slot as transmitting, receiving, interfered, free, or parity. A node that initiates a communication session with a quality of service requirement can propagate a channel allocation request along the communication path to the destination. By checking the channel state, the EECAS can determine feasible radio‐frequency‐slot allocations for the end‐to‐end path. The simulation results in this study demonstrate that the proposed approach performs well in intra‐mesh and inter‐mesh communications, and it outperforms previous channel allocation schemes in end‐to‐end throughput. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
肖爱民  李辉 《信号处理》2011,27(12):1811-1816
针对源节点通过两个中继向目的节点发送数据的无线通信系统,为了减小传统中继协作方案的复用损失,提出了一种将源端网络编码和交替传输有效结合起来的新方案,称为交替源端网络编码(SSNC)。该方案在源端每三个时隙对发送数据进行一次网络编码,并且两个中继在相邻的时隙中交替的发送和接收数据,每个时隙中,一个中继接收源端数据的同时另一个中继转发上一个时隙其接收到的数据给目的端。通过对该方案的中断概率和分集复用折中性能的推导和分析,发现该方案相对于传统的重复编码和分布式空时码方案在获得相同分集阶数的情况下有更高的传输效率,在实际的通信系统中可以兼顾性能和效率。仿真结果证实了我们的结论。   相似文献   

9.
Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A Novel Distributed Scheduling Algorithm for Downlink Relay Networks   总被引:1,自引:0,他引:1  
To extend network coverage and to possibly increase data packet throughput, the future wireless cellular networks could adopt relay nodes for multi-hop data transmission. This letter proposes a novel distributed scheduling algorithm for downlink relay networks. Soft-information indicating the probability of activating each network link is exchanged iteratively among neighboring network nodes to determine an efficient schedule. To ensure collision-free simultaneous data transmissions, collision-avoiding local constraint rules are enforced at each network node. To increase resource utility, the soft-information is weighted according to the urgency of data transmission across each link, which also helps maintain throughput fairness among network users.  相似文献   

11.
A relay‐based wireless communication model can relay information along with the power bidirectionally using the amplify‐and‐forward scheme. This paper studies such model extensively. Three information and power relaying protocols, that is, time‐based switching relaying, power‐based splitting relaying, and hybrid time switching‐based and power splitting‐based relaying (HTPSR) are used to carry forward bidirectional information and power transfer. First, a solo relay model is studied, for which, we derived a throughput expression for end‐to‐end information transfer, and this is done for all the three relaying protocols. The paper indicates that the system throughput depends upon the time switching and the power splitting ratio. Further, to make the system more reliable and robust, multiple relays are used in the path. Various relay selection schemes are used for path selection in each transmission, thereby yielding different throughput performances. The results show that an optimal throughput is obtained for a given relay location at an optimal set of values of splitting and switching ratio. Moreover, the HTPSR outperforms both the power splitting and time switching protocol in system throughput performance for a single as well as a multiple‐relay model. Whereas, in relay selection schemes, the best SNR selection scheme outperforms in all the schemes used. The simulated results confirm that the system throughput is an active function of relay placement.  相似文献   

12.
Stable Throughput of Cognitive Radios With and Without Relaying Capability   总被引:2,自引:0,他引:2  
A scenario with two single-user links, one licensed to use the spectral resource (primary) and one unlicensed (secondary or cognitive), is considered. According to the cognitive radio principle, the activity of the secondary link is required not to interfere with the performance of the primary. Therefore, in this paper, it is assumed that the cognitive link accesses the channel only when sensed idle. Moreover, the analysis includes: (1) random packet arrivals; (2) sensing errors due to fading at the secondary link; (3) power allocation at the secondary transmitter based on long-term measurements. In this framework, the maximum stable throughput of the cognitive link (in packets/slot) is derived for a fixed throughput selected by the primary link. The model is modified so as to allow the secondary transmitter to act as a ldquotransparentrdquo relay for the primary link. In particular, packets that are not received correctly by the intended destination might be decoded successfully by the secondary transmitter. The latter can, then, queue and forward these packets to the intended receiver. A stable throughput of the secondary link with relaying is derived under the same conditions as before. Results show that benefits of relaying strongly depend on the topology (i.e., average channel powers) of the network.  相似文献   

13.
Single-User Broadcasting Protocols Over a Two-Hop Relay Fading Channel   总被引:1,自引:0,他引:1  
A two-hop relay fading channel is considered, where only decoders possess perfect channel state information (CSI). Various relaying protocols and broadcasting strategies are studied. The main focus of this work is on simple relay transmission scheduling schemes. For decode-and-forward (DF) relaying, the simple relay cannot buffer multiple packets, nor can it reschedule retransmissions. This gives rise to consideration of other relaying techniques, such as amplify-and-forward (AF), where a maximal broadcasting achievable rate is analytically derived. A quantize-and-forward (QF) relay, coupled with a single-level code at the source, uses codebooks matched to the received signal power and performs optimal quantization. This is simplified by a hybrid amplify-QF (AQF) relay, which performs scaling, and single codebook quantization on the input. It is shown that the latter is optimal by means of throughput on the relay-destination link, while maintaining a lower coding complexity than the QF setting. A further extension of the AQF allows the relay to perform successive refinement, coupled with a matched multilevel code. Numerical results show that for high signal-to-noise ratios (SNRs), the broadcast approach over AF relay may achieve higher throughput gains than other relaying protocols that are numerically tractable  相似文献   

14.
To guarantee the QoS of multimedia applications in a mobile ad hoc network (MANET), a reliable packet transmitting mechanism in MANET is proposed. In this paper, we introduce an effective link lifetime estimation scheme. According to the current network topology and corresponding estimated link lifetime, the end‐to‐end connection is established adaptively in the best effort manner. Consequently, utilizing the network coding method the relay node combines and forwards the packets on the working path. Furthermore, to keep the balance between the gain in reliability and the amount of redundant packets, the time for sending the redundant packets on the backup path is determined for the link stability intelligently. Simulations show that our mechanisms can provide reliable transmissions for data packets and enhance the performance of the entire network, such as the packet delivery ratio, the end‐to‐end delay and the number of control messages. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
一种基于自适应网络卷积编码的协作中继方法   总被引:1,自引:0,他引:1  
淦明  李辉 《电子与信息学报》2011,33(6):1373-1378
在无线衰落信道环境中,协作中继是一种增加额外分集增益的有效方法,而网络编码可以用来提高网络吞吐量。网络编码采用XOR(异或)来混合两个源端的信息包,其稳健性差并且每个中继只能服务两个源端。该文提出一种自适应网络卷积编码协作中继方法,在中继端采用卷积编码方法代替XOR来混合两个或多个源端的信息包,混合后的信息可以看作是卷积编码器的一路输出,然后将其转发给目的端。当信道处于深度衰落时,该文提出了一种宽松自适应网络卷积编码协作中继方法,放松了中继参与转发的条件。该文提出的中继方法稳健性好,可以自适应匹配变化的无线网络拓扑结构,并且减少了网络编码协作中继方法所需要的中继个数。理论分析和仿真结果表明所提出的中继方法相比网络编码协作中继方法在性能上有大幅提高,尤其是随着协作节点数目增加,可保证系统获得稳定的额外满分集增益。  相似文献   

17.
This letter addresses a scheduling problem for wireless network coding (WNC). In our previous work, we have theoretically shown that the optimum number of nodes to be included into a network?coded packet as well as its transmission rate depends on time?varying link condition between a transmitting node and receiving nodes [1]. Based on this observation, this letter designs practical scheme which opportunistically selects scheduled nodes, packets to be coded and an employed modulation level according to time?varying channel conditions and packet length. The numerical results show that the proposed opportunistic scheduling can improve the overall throughput as compared with non?opportunistic approach.  相似文献   

18.
Deployment of wireless relay nodes can enhance system capacity, extend wireless service coverage, and reduce energy consumption in wireless networks. Network coding enables us to mix two or more packets into a single coded packet at relay nodes and improve performances in wireless relay networks. In this paper, we succeed in developing analytical models of the throughput and delay on slotted ALOHA (S-ALOHA) and S-ALOHA with network coding (S-ALOHA/NC) for single-relay multi-user wireless networks with bidirectional data flows. The analytical models involve effects of queue saturation and unsaturation at the relay node. The throughput and delay for each user node can be extracted from the total throughput and delay by using the analytical models. One can formulate various optimization problems on traffic control in order to maximize the throughput, minimize the delay, or achieve fairness of the throughput or the delay. In particular, we clarify that the total throughput is enhanced in the S-ALOHA/NC protocol on condition that the transmission probability at the relay node is set at the value on the boundary between queue saturation and unsaturation. Our analysis provides achievable regions in throughput on two directional data flows at the relay node for both the S-ALOHA and S-ALOHA/NC protocols. As a result, we show that the achievable region in throughput can be enhanced by using network coding and traffic control.  相似文献   

19.
In a relay‐assisted cellular network, the transmission mode (either direct transmission or relaying) and the transmit power of the source and relay nodes affect not only transmission rates of individual links but also the rates of other links sharing the same channel. In this paper, we propose a cross‐layer design that jointly considers the transmission mode/relay node selection (MRS) with power allocation (PA) to optimize the system rate. We first formulate an optimization problem for a cellular system, where the same frequency channel can be reused in different cells. A low complexity heuristic MRS scheme is proposed on the basis of the link and interference conditions of the source and potential relay nodes. Given the transmission mode and relay node (if the relaying mode is chosen) of each link, the transmit power of the source and relay nodes can be solved by geometric programming. This method for MRS and PA can achieve a close‐to‐optimum performance, but implementing the PA requires heavy signalling exchanged among cells. To reduce the signalling overheads, we finally proposed a heuristic and distributed method for MRS and PA inspired by some asymptotic analysis. Numerical results are conducted to demonstrate the rate performance of the proposed methods.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Polar codes represent an emerging class of error-correcting codes with power to approach the capacity of the physically degraded relay channel and relevant coding schemes have been proposed in the literature. This paper aims to design new cooperative decode-and-forward (DF) polar coding schemes for half-duplex two-relay channel based on the Plotkin’s construction illustrating their performances gain. In these schemes, we consider the use of time-division process in transmission. The source node transmits its polar-coded information to both relays and the destination nodes during the first time slot. Each relay node receives the data from the source and processes it using the DF protocol. For the second transmission period, each relay first decodes the source signal then after reconstruction of the information reduction matrix based on the multilevel characteristics of polar codes, the extracted data at each relay are recoded using another polar code and transmitted to the destination. At destination node, the signals received from each relay and source nodes are processed by using multi-joint successive cancellation decoding for retrieving the original information bits. We demonstrate via simulation results that by carefully constructed polarisation matrix at each relay node, we can achieve the theoretical capacity in the half-duplex relay channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号