首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Problems encountered in operation of saturated steam geothermal turbine units that stem from the specific features of a geothermal heat carrier are considered. A two-phase state, increased content of salts, and corrosiveness of geothermal working medium have a negative influence on the efficiency and reliability of the turbine’s first and last stages. Owing to high concentrations of impurities in the liquid phase, the first stages suffer from intense generation of deposits. The resulting decrease in the power output is due to both fouling of the flow path and significantly growing roughness of the turbine cascade blades. The flow of wet steam in the geothermal turbine flow path is accompanied by droplet impingement erosion of the last-stage blades and corrosion fatigue of the metal of rotor elements. In addition, the losses due to steam wetness in the flow path cause an essential decrease of the geothermal turbine efficiency. The article gives examples of erosioninduced damage inflicted to the last-stage rotor blades, corrosion fatigue of the metal of integrally-machined shroud elements, and deposits in the nozzle vane cascades of geothermal turbine stages. The article also presents the results from numerical investigations of the effect that the initial steam wetness has on the silicic acid concentration in the wet steam flow liquid phase in a 4.0 MW geothermal turbine’s stages. A method for achieving more efficient and reliable operation of the geothermal turbine low-pressure section by applying a secondary flash steam superheating system with the use of a hydrogen steam generator is proposed. The article presents a process arrangement for preparing secondary flash steam supplied to the geothermal turbine low-pressure section in which the flash steam is evaporated and superheated through the use of a hydrogen steam generator. The technical characteristics of the system for preparing secondary flash steam to be used in the intermediate inlet to the turbine were preliminarily assessed (taking the upgrading of the Mutnovsk geothermal power plant as an example), and it has been shown from this assessment that the wetness degree in the low-pressure section can be decreased down to its final value equal to 2.0%.  相似文献   

2.
This paper presents a new single-pole switching scheme for depressing turbine–generator blade torsional torque. Since the single-phase fault occurs more frequently in power line accidents, there are many advantages on stability and reliability by using single-pole switching on the faulty phase. Nevertheless, the two healthy phases still maintain power transmission during the dead time between single-pole tripping and line reclosing, which induce significantly negative-sequence current flowing into the nearby turbine–generator. This would cause super-synchronous resonance (SPSR) effect on low-pressure (LP) turbine blades and even result in fatigue damage. The short-time compensation of a grounding capacitor set up at the neutral of the wye transformer is proposed to eliminate this negative-sequence current. Then the induced adverse effect on blades can be precluded.  相似文献   

3.
介绍某发电厂发生的一起超临界机组低压转子末级叶片损坏事故,宏观检查发现是因为反向第6级蜂窝汽封跌落引起的。进一步开展材质分析、力学性能试验、金相试验,并对蜂窝汽封的加工工艺综合分析,得出如下结论:钎焊工艺影响了汽封体的原始热处理状态,使汽封体的综合机械性能下降,而且汽封体结构不合理,加上运行蒸汽的冲击,导致汽封体跌落断裂,造成末级叶片损坏。分析结论对汽轮机的检修、改造具有指导意义。  相似文献   

4.
Results from studies of factors due to which fatigue damage is inflicted to the turbine and compressor blades of stationary gas turbine units operating at the compressor stations installed on gas mains of Russia are considered.  相似文献   

5.
At turbine starts with low steam flow rates in idle mode, the low-pressure rotor blades consume energy, causing the ventilation heating of the stages and creating higher depression in them than in the condenser. This leads to the return steam flows in the exhaust of the low-pressure cylinder (LPC), reducing the heat due to the moisture of starting steam damps and cooling injections. It is shown that, as a result of upgrading with the transition to fully milled shroud platforms of rotor blades, the depression in the stages decreases and their cooling efficiency is reduced due to the removal of an elastic turn of the rotor blades under the action of centrifugal forces and seal of them by periphery. Heating the rotor blades of the last stages exceeds the temperature threshold of soldering resistance of stellite plates (150°C), and their mass strips begin. The start-up circuit providing both the temperature retention of the last stages lower the soldering resistance threshold due to overwetting the steam damps up to saturation condition and the high degree of removal from the dump steam of excessive erosive-dangerous condensed moisture was proposed, applied, and tested at the operating power unit. The investment in the development and application of the new start-up circuit are compensated in the course of a year owing to guaranteed prevention of the strips of stellite plates that lengthens the service life of the rotor blades of the last stages as well as increase of the rotor blade efficiency due to the sharp decrease of erosive wear of the profiles and reduction of their surface roughness. This reduces the annual consumption of equivalent fuel by approximately 1000 t for every 100 MW of installed capacity.  相似文献   

6.
The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental–industrial exploitation and can be used in industry.  相似文献   

7.
庞乐  赵玉柱  张帅  李鹏 《中国电力》2019,52(4):133-137
为研究低压省煤器吸收的排烟余热的有效利用水平,基于等效焓降法的基本原理,建立了汽轮机低压加热系统中凝结水抽出与引入对其排汽量影响的通用计算模型,进而推导出低压省煤器在各种连接方式下投入运行后对汽轮机排汽量影响的通用计算模型。以某国产330 MW机组为例,利用所提出的计算模型得出两种不同工况下汽轮机排汽量和排汽损失的增加值,结果表明,低压省煤器吸收的排烟余热能用于汽轮机做功的仅为10%左右,其余热量最终都进入冷源损失。  相似文献   

8.
汽轮机17CrMo1V材料焊接低压转子脆性断裂的研究   总被引:4,自引:0,他引:4  
介绍了采用17CrMo1V材料的汽同焊接低压转子脆断评定方法。给出了17CrMo1V转子材料断裂力学性能数据的取值和低压转子界裂纹尺寸、允许初裂纹尺寸、疲劳裂纹扩展寿命的确定方法,以及低压转子理解纹扩展寿命评估和预测方法。结合某大型汽轮机的运行实际,给出了17CrMo1V材料焊接低压转子防脆断评定的实例。  相似文献   

9.
1台135MW机组在正常运行时突然发生汽轮机低压转子末级叶片断裂,被迫停机检修。为了查明叶片断裂的原因,通过对叶片断口进行宏观、微观试验,并结合运行参数分析,排除了叶片遭水击断裂的可能性,得出叶片断裂的主要原因是叶片局部区域受到外来高温热源击伤,造成局部金属材料组织发生变化,形成疲劳裂纹源所致。  相似文献   

10.
Technical viability and economic feasibility of improving the technology of a 450-MW CCGT unit’s participation in power load leveling of the power system operating in a GTU based CHP mode by transferring a 450-MW CCGT T-125/150 steam turbine to the driving mode instead of its shutdown are considered. It is shown that the shutdown of the steam turbine is associated with increased fuel consumption under start-up conditions, delayed steam turbine loading and the CCGT unit as a whole, and a loss of steam turbine life characteristics. The technology of transferring the 450-MW CCGT unit to the GTU based CHP mode, possible schemes of high- and low-pressure steam distributions between line water heaters, and methods and results of calculation of power parameters of the 450-MW CCGT unit with the turbine shutdown and transferring it to the driving mode in the absence and presence of peak-load heaters in the heat balance are presented. It is shown that switching the 450-MW CCGT unit from the base 290 MW electric load and 1006 GJ/h heat production to the GTU based CHP mode leads to a decrease in electric capacity of the CCGT unit by 90 MW and an increase in heat production by 335–348 GJ/h. Comparative graphs of the steam turbine start-up and the CCGT unit rated loading in the comparable variants after its operation in the GTU based CHP mode for 8–10 h are given. Evaluation techniques and results of the economic efficiency of the generator driving mode are compared with the shutdown of the steam turbine. Based on the performed calculations, it is shown that, for various combinations of fuel equivalent and electricity costs and heating tariffs, the expedient time for switching the steam turbine to the driving mode is 10–18 h. Additional advantages of the driving mode are noted, such as improvement of the steam turbine reliability due to the elimination of cyclic temperature variations of its steam-inlet elements and vibrational oscillations in the final stages of the low-pressure cylinder and the possibility of the steam turbine generator to operate as a synchronous condenser.  相似文献   

11.
The practice of tripping the generator breakers immediately following a boiler/turbine trip exposes a steam turbine generator to a potentially damaging overspeed operating condition. This paper describes the use of the sequential trip mode as a means of minimizing the exposure to possible unit damage following a boiler/turbine trip. Included is a comparison of the application of devices used by several major steam turbine generator manufacturers in accomplishing sequential tripping of the unit. This paper also discusses the differences in the devices used in implementing the tripping scheme and those applied as backup motoring protection. Additionally, the paper provides guidance in the selection of which functions should and should not be used to initiate sequential tripping  相似文献   

12.
A brief analysis of the existing methods for controlling the operating conditions of the turbine units that operate at variable loads is presented. In practice, the outdated rule of operation is most frequently used that states that the higher the parameters of the live and reheat steam and the lower the condenser pressure are, the higher is the efficiency of the turbine unit. However, in the technical literature, there is sufficiently substantiated evidence that this approach is not always correct, especially under low loads. This applies to both the regulation of the initial and final pressure and reheat temperature t r. In the article, particular stress is laid on the controllable parameter t r, the effect of which in the operational practices, according to the results of the analysis, is underestimated. The causes are considered that constrain more effective use of reheat temperature t r as a process variable. The results of field trials to investigate the influence of t r on the efficiency of turbine units of various capacities, viz., of 210, 250, 300, and 325 MW, during operation at varying loads are presented. It is shown that a decrease in t r to an optimal value of 10–30°C, depending on the load and the condenser pressure, increases the thermal efficiency by 1–2%. The following general pattern has been set: the lower the load, the lower the optimal reheat temperature. The main causes and factors that result in more efficient use of the heat phase transition in the steam path of the low-pressure cylinder and increased efficiency of the unit under rational choice of the reheat temperature are studied.  相似文献   

13.
提出汽轮机叶片疲劳寿命计算的三维有限元模型,通过讨论利用有限元软件进行分析时的合理载荷处理办法以及各种寿命影响因素的考虑方法,给出了采用通用软件进行疲劳寿命计算的基本方法,依据该模型方法进行疲劳寿命的实例分析,分析结果与实际相符。  相似文献   

14.
It is shown that the extended life and enhanced operational reliability of parts and subassemblies of the most popular GTK-10-4 gas transmission plants are determined by the enhanced efficiency of the control over technical condition and operational safety of turbine plants in conformity with industrial safety requirements imposed on gas pipeline compressor stations. It has been established that the materials of parts and subassemblies of gas turbine plants with different, especially with maximal operating time, shall be exposed to NDT for the purpose of determining the actual mechanical characteristics of these materials with different operating time and calculating residual life. The analysis of damageability and operating conditions has helped to identify parts and subassemblies for repair or replacement with the highest frequency of unacceptable defects. These parts and subassemblies have been shown to include base members of the axial compressor (AC), a turbine housing, an axial compressor rotor, high- and low-pressure turbine (HPT and LPT) discs, a 12-part holder, the housing of the holder of HPT and LPT guiding blades, a sealed baffler, and working and guiding AC, LPT and HPT blades. The most typical operational defects have been enumerated and analyzed. It has been determined that the primary task of the industrial safety appraisal for extending the life of GTK-10-4 with limit-exceeding operating time is to thoroughly examine HPT and LPT discs with more than 130,000 hours of operating time and establish by DT methods characteristics of materials for evaluation, taking account of their degradation, and residual life of critical turbine elements. In addition, it has been shown that the service life of HP turbine discs can be extended by replacing the disc material (EP-428 12% chromium steel) with a material with a higher linear expansion factor that somewhat exceeds the expansion factor of EI-893 nickel alloy used to melt out working blades.  相似文献   

15.
汽轮机末级叶片颤振设计   总被引:1,自引:0,他引:1  
随着汽轮机的大型化和多样化,汽轮机的叶片振动安全性会出现新的问题,叶片会在非共振强迫振动下产生振动疲劳破坏。研究表明.这是一种叶片颤振。目前,预估汽轮机叶片失速颤振的简化方法有:半经验法、经验法和三维粘性失速颤振数值解法。本文从微分方程稳定性原理出发,阐明了叶片颤振的机理。介绍了几种预估末级叶片颤振的方法,变形激盘法是作.者早期与北航共同开发的一种半经验法,已用于工厂叶片颤振设计。并根据作者的经验,推荐了几种经验法来预估叶片的颤振特性。  相似文献   

16.
Due to more various power disturbances occurring in a power system involving a HVDC link, the turbine generator shafts and/or blades are more prone to damage than in general HVAC systems. In this paper, a new mechanical damper scheme based on participation factor approach is proposed to damp torsional torque and prolong the life of turbine mechanism. Two types of torsional damping couplings, inertia damping coupling and elastic damping coupling, are adopted and examined. The optimal type and the optimal location of the damping coupling will be identified and installed to the turbine generator shaft section. The results demonstrate that the best damper may not be installed at the location with the most onerous vibrations but provides satisfactory damping performance on shafts and blades following severe power disturbances in a HVDC link.  相似文献   

17.
Presently, when the structure of energy consumption by industrial enterprises is being changed, many type PT turbine units operate with limitations imposed on their operating conditions, while type R backpressure turbines are often shut down for a long time or even removed from operation. Thus, the problem of using steam previously intended for process needs combined with the loading of the main equipment and additional generation of power and heat becomes urgent for many power stations. Three main ways for solving this problem are examined in this paper. Potential alternatives for retrofitting of cogeneration power stations (TETS) with types PT and R turbines are discussed. Each alternative solves a specific problem brought about by the actual operating conditions of a turbine at a specific TETs. The results of retrofitting of PT-80-130 turbines with an increase in the throughput capacity of the intermediate pressure cylinder (IPC) and R-50-130 turbines with installation of an additional low-pressure cylinder (LPC) are presented. The experience in operation of the retrofitted R-50-130 turbine with an unconventional arrangement where an additional LPC is installed upstream the high-pressure cylinder (HPC) rather than between the generator and HPC is also described. The experience in the upgrading of TETs with installation of bottom steam turbines driven by steam from a process steam extraction that is not demanded for is presented. Depending on the conditions at a specific TETs, a bottom steam turbine can be installed on a new foundation or in the compartment of a dismounted turbine with the use of serviceable auxiliary and heat-exchange equipment.  相似文献   

18.
超临界压力汽轮机固体颗粒侵蚀的表面硬化处理技术   总被引:2,自引:1,他引:2  
简要介绍汽轮机的固体颗粒侵蚀及其对机组安全性和经济性的危害,介绍国外为预防汽轮机通流部分的某些喷嘴和动叶固体颗粒侵蚀所采用的各种表面硬化处理技术,包括等离子喷涂和扩散渗层的现场运行经验,供我国发展高性能大容量超临界压力汽轮机及亚临界压力机组受到固体颗粒侵蚀损伤恢复其性能时参考。  相似文献   

19.
The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder’s inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.  相似文献   

20.
The hazards of operating generation equipment at abnormal frequencies are described and acceptable protective schemes are summarized. The discussion covers: generator and turbine over- and underlying capability; underfrequency protection methods for steam turbines; generator-transformer overexcitation considerations; nuclear generating plants; and combustion-turbine underfrequency operation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号