首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both the hypersingular and nearly singular integrals, which appear in the hypersingular boundary integralequations and integral representations of the secondary fields, respectively, are regularized by the application of the superposition principle. Two kinds of the non-singular formulations, namely, those with the strongly singular and weakly singular kernels, are presented in this paper. The formulations are given in terms of the relevant boundary quantities and the collocation at element junctions is possible. Two- and three-dimensional problems are analysed simultaneously in a unique way for either internal or external problems of the potential theory and elasticity.  相似文献   

2.
The symmetric Galerkin boundary element method is used to solve boundary value problems by keeping the symmetric nature of the matrix obtained after discretization. The matrix elements are obtained from a double integral involving the double derivative of Green's operator, which is highly singular. The paper presents a regularization of the hypersingular integrals which depend only on the properties of Green's tensor. The method is presented in the case of Laplace's operator, with an example of application. The case of elasticity is finally addressed theoretically, showing an easy extension to any case of anisotropy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A natural measure of the error in the boundary element method rests on the use of both the standard boundary integral equation (BIE) and the hypersingular BIE (HBIE). An approximate (numerical) solution can be obtained using either one of the BIEs. One expects that the residual, obtained when such an approximate solution is substituted to the other BIE is related to the error in the solution. The present work is developed for vector field problems of linear elasticity. In this context, suitable ‘hypersingular residuals’ are shown, under certain special circumstances, to be globally related to the error. Further, heuristic arguments are given for general mixed boundary value problems. The calculated residuals are used to compute element error indicators, and these error indicators are shown to compare well with actual errors in several numerical examples, for which exact errors are known. Conclusions are drawn and potential extensions of the present error estimation method are discussed.  相似文献   

4.
This work presents new variable transformations for accurate evaluation of the nearly singular integrals arising in the 3D boundary element method (BEM). The proposed method is an extension of the variable transformation method in Ref. [4] for 2D BEM to 3D BEM. In this paper, first a new system denoted as (α,β) is introduced compared with the polar coordinate system. So the original transformations in Ref. [4] can be developed to 3D in (α,β) or the polar coordinate system. Then, the new transformation is performed by four steps in case the source point coincides with the projection point or five steps otherwise. For each step, a new transformation is proposed based on the approximate distance function, so that all steps can finally be unified into a uniform formation. To perform integration on irregular elements, an adaptive integration scheme combined with the transformations is applied. Numerical examples compared with other methods are presented. The results demonstrate that our method is accurate and effective.  相似文献   

5.
This work presents a further development of the distance transformation technique for accurate evaluation of the nearly singular integrals arising in the 2D boundary element method (BEM). The traditional technique separates the nearly hypersingular integral into two parts: a near strong singular part and a nearly hypersingular part. The near strong singular part with the one-ordered distance transformation is evaluated by the standard Gaussian quadrature and the nearly hypersingular part still needs to be transformed into an analytical form. In this paper, the distance transformation is performed by four steps in case the source point coincides with the projection point or five steps otherwise. For each step, new transformation is proposed based on the approximate distance function, so that all steps can finally be unified into a uniform formation. With the new formulation, the nearly hypersingular integral can be dealt with directly and the near singularity separation and the cumbersome analytical deductions related to a specific fundamental solution are avoided. Numerical examples and comparisons with the existing methods on straight line elements and curved elements demonstrate that our method is accurate and effective.  相似文献   

6.
This paper presents an extension of the previously published sinh transformation and semi-analytical method for the evaluation of nearly singular integrals. The extension involves applying the two methods to two dimensional (2D) general anisotropic boundary element method (BEM). The new feature of the present method is that the distance from the calculation point to parabolic elements is expressed as $r^{2}=(\xi -\eta )^{2}g(\xi )+b^{2}$ , where $g(\xi )$ is a well-behaved function, $\eta \hbox { and }b$ stand for the position of the projection of the nearly singular point and the shortest distance from the calculation point to the integration element, respectively. As a result, the two methods can be employed in a straightforward fashion. The accuracy and the efficiency of the proposed methods are demonstrated with four benchmark test integrals that are commonly encountered in the application of anisotropic BEM. Comparisons between the two proposed methods are also presented in the paper.  相似文献   

7.
An implementation of the boundary element method requires the accurate evaluation of many integrals. When the source point is far from the boundary element under consideration, a straightforward application of Gaussian quadrature suffices to evaluate such integrals. When the source point is on the element, the integrand becomes singular and accurate evaluation can be obtained using the same Gaussian points transformed under a polynomial transformation which has zero Jacobian at the singular point. A class of integrals which lies between these two extremes is that of ‘nearly singular’ integrals. Here, the source point is close to, but not on, the element and the integrand remains finite at all points. However, instead of remaining flat, the integrand develops a sharp peak as the source point moves closer to the element, thus rendering accurate evaluation of the integral difficult. This paper presents a transformation, based on the sinh function, which automatically takes into account the position of the projection of the source point onto the element, which we call the ‘nearly singular point’, and the distance from the source point to the element. The transformation again clusters the points towards the nearly singular point, but does not have a zero Jacobian. Implementation of the transformation is straightforward and could easily be included in existing boundary element method software. It is shown that, for the two‐dimensional boundary element method, several orders of magnitude improvement in relative error can be obtained using this transformation compared to a conventional implementation of Gaussian quadrature. Asymptotic estimates for the truncation errors are also quoted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A meshless approach to the Boundary Element Method in which only a scattered set of points is used to approximate the solution is presented. Moving Least Square approximations are used to build a Partition of Unity on the boundary and then used to construct, at low cost, trial and test functions for Galerkin approximations. A particular case in which the Partition of Unity is described by linear boundary element meshes, as in the Generalized Finite Element Method, is then presented. This approximation technique is then applied to Galerkin boundary element formulations. Finally, some numerical accuracy and convergence solutions for potential problems are presented for the singular, hypersingular and symmetric approaches.  相似文献   

9.
A symmetric Galerkin formulation and implementation for heat conduction in a three‐dimensional functionally graded material is presented. The Green's function of the graded problem, in which the thermal conductivity varies exponentially in one co‐ordinate, is used to develop a boundary‐only formulation without any domain discretization. The main task is the evaluation of hypersingular and singular integrals, which is carried out using a direct ‘limit to the boundary’ approach. However, due to complexity of the Green's function for graded materials, the usual direct limit procedures have to be modified, incorporating Taylor expansions to obtain expressions that can be integrated analytically. Several test examples are provided to verify the numerical implementation. The results of test calculations are in good agreement with exact solutions and corresponding finite element method simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Benefited from the accuracy improvement in modeling physical problem of complex geometry and integrating the discretization and simulation, the isogeometric analysis in boundary element method (IGABEM) has been drawn a great deal of attention. The nearly singular integrals of 2D potential problem in the IGABEM are addressed by a semianalytical scheme in the present work. We use the subtraction technique to separate the integrals to singular and nonsingular parts, where the singular parts can be calculated by the analytical formulae derived by utilizing a series of integration by parts, while the nonsingular parts are calculated numerically with fewer quadrature points. Comparing the present semianalytical results with the ones of exact solutions, we find that the present method can obtain precise potential and flux densities of inner points much closer to the boundary without refining the elements nearby. Sufficient comparisons with other regularization schemes, such as the exponential and sinh transformation methods, are also conducted. The results in the numerical examples show the competitiveness of the present method, especially when calculating the nearly strongly and highly singular integrals during the simulation of the flux density.  相似文献   

11.
This paper is concerned with discretization and numerical solution of a regularized version of the hypersingular boundary integral equation (HBIE) for the two-dimensional Laplace equation. This HBIE contains the primary unknown, as well as its gradient, on the boundary of a body. Traditionally, this equation has been solved by combining the boundary element method (BEM) together with tangential differentiation of the interpolated primary variable on the boundary. The present paper avoids this tangential differentiation. Instead, a “pure” BEM method is proposed for solving this class of problems. Dirichlet, Neumann and mixed problems are addressed in this paper, and some numerical examples are included in it.  相似文献   

12.
This paper presents a conforming C1 boundary integral algorithm based on Hermite interpolation. This work is motivated by the requirement that the surface function multiplying a hypersingular kernel be differentiable at the collocation nodes. The unknown surface derivatives utilized by the Hermite approximation are determined, consistent with other boundary values, by writing a tangential hypersingular equation. Hypersingular equations are primarily invoked for solving crack problems, and the focus herein is on developing a suitable approximation for this geometry. Test calculations for the Laplace equation in two dimensions indicate that the algorithm is a promising technique for three-dimensional problems.  相似文献   

13.
A boundary spectral method is developed to solve acoustical problems with arbitrary boundary conditions. A formulation, originally derived by Burton and Miller, is used to overcome the non‐uniqueness problem in the high wave number range. This formulation is further modified into a globally non‐singular form to simplify the procedure of numerical quadrature when spectral methods are applied. In the present approach, generalized Fourier coefficients are determined instead of local variables at nodes as in conventional methods. The convergence of solutions is estimated through the decay of magnitude of the generalized Fourier coefficients. Several scattering and radiation problems from a sphere are demonstrated with high wave numbers in the present paper. Copyright © 1999 John Wiey & Sons, Ltd.  相似文献   

14.
提出一种自适应方法计算声学边界元中的拟奇异积分,通过单元分级细分将总积分转移到子单元上以消除拟奇异性。在此方法基础上深入研究拟奇异性,进一步提出接近度的概念,其中临界接近度可作为拟奇异积分计算的理论依据,并可用于预估拟奇异性是否存在。此方法的积分精度可调控,且不受场点位置限制,相比于已有方法更加灵活高效。数值分析表明拟奇异性强弱由场点与单元的相对位置决定,单元上远离场点的区域拟奇异性很弱,无需处理。研究结果为处理边界元法中的拟奇异性问题提供了新的选择和参考。  相似文献   

15.
An efficient algorithm is employed to evaluated hyper and super singular integral equations encountered in boundary integral equations analysis of engineering problems. The algorithm is based on multiple subtractions and additions to separate singular and regular integral terms in the polar transformation domain, primarily established in Refs. (Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FJ. A general algorithm for the numerical solution of hypersingular boundary integral equations. Trans ASME 1992;59:604–614; Guiggiani M, Casalini P. Direct computation of Cauchy principal value integral in advanced boundary element. Int J Numer Meth Engng 1987;24:1711–1720. Guiggiani M, Gigante A. A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J Appl Mech Trans ASME 1990;57:906–915). It can be proved that the regular terms have finite analytical solutions in the range of integration, and the singular terms will be replaced by special periodic kernels in the integral equations. The subtractions involve to multiple derivatives of analytical kernels and the additions require some manipulation to separate the remaining regular terms from singular ones. The regular terms are computed numerically. Three examples on numerical evaluation of singular boundary integrals are presented to show the efficiency and accuracy of the algorithm. In this respect, strongly singular and hypersingular integrals of potential flow problems are considered, followed by a supersingular integral which is extracted from the partial differentiation of a hypersingular integral with respect to the source point.  相似文献   

16.
Recently, sinh transformations have been proposed to evaluate nearly weakly singular integrals which arise in the boundary element method. These transformations have been applied to the evaluation of nearly weakly singular integrals arising in the solution of Laplace's equation in both two and three dimensions and have been shown to evaluate the integrals more accurately than existing techniques.More recently, the sinh transformation was extended in an iterative fashion and shown to evaluate one dimensional nearly strongly singular integrals with a high degree of accuracy. Here the iterated sinh technique is extended to evaluate the two dimensional nearly singular integrals which arise as derivatives of the three dimensional boundary element kernel. The test integrals are evaluated for various basis functions and over flat elements as well as over curved elements forming part of a sphere.It is found that two iterations of the sinh transformation can give relative errors which are one or two orders of magnitude smaller than existing methods when evaluating two dimensional nearly strongly singular integrals, especially with the source point very close to the element of integration. For two dimensional nearly weakly singular integrals it is found that one iteration of the sinh transformation is sufficient.  相似文献   

17.
This paper presents a gradient field representation using an analytical regularization of a hypersingular boundary integral equation for a two-dimensional time harmonic wave equation called the Helmholtz equation. The regularization is based on cancelation of the hypersingularity by considering properties of hypersingular elements that are adjacent to a singular node. Advantages to this regularization include applicability to evaluate corner nodes, no limitation for element size, and reduced computational cost compared to other methods. To demonstrate capability and accuracy, regularization is estimated for a problem about plane wave propagation. As a result, it is found that even at a corner node the most significant error in the proposed method is due to truncation error of non-singular elements in discretization, and error from hypersingular elements is negligibly small.  相似文献   

18.
This paper describes a new method for direct numerical evaluation of multidimensional hypersingular integrals assigned on smooth curves and surfaces. These integrals arise when the boundary integral equations are used to solve problems of mechanics, electrodynamics, aerodynamics, etc. The hypersingular integrals are considered, in the sense of Hadamard, as finite parts. The main advantage of the proposed method is the numerical computation of the hypersingular integrals by the direct application of the developed cubature formulas, thus requiring little analytical pre-work. The method is not restricted to the type of problem however and may be easily applied to any hypersingular integrals. The convergence of the proposed technique has been proved and error estimates are given. An illustrative example demonstrates the accuracy and efficiency of the method.  相似文献   

19.
A new transformation technique is introduced for evaluating the two‐dimensional nearly singular integrals, which arise in the solution of Laplace's equation in three dimensions, using the boundary element method, when the source point is very close to the element of integration. The integrals are evaluated using (in a product fashion) a transformation which has recently been used to evaluate one‐dimensional near singular integrals. This sinh transformation method automatically takes into account the position of the projection of the source point onto the element and also the distance b between the source point and the element. The method is straightforward to implement and, when it is compared with a number of existing techniques for evaluating two‐dimensional near singular integrals, it is found that the sinh method is superior to the existing methods considered, both for potential integrals across the full range of b values considered (0<b?10), and for flux integrals where b>0.01. For smaller values of b, the use of the Lmethod is recommended for flux integrals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
This work presents an improved approach for the numerical evaluation of nearly singular integrals that appear in the solution of two-dimensional (2D) boundary element method (BEM) using parabolic geometry elements. The proposed method is an extension of the sinh transformation, which is used to evaluate the nearly singular integrals on linear and/or circular geometry elements. The new feature of the present method is that the distance from the source point to parabolic elements is expressed as r2=(ξ?η)2g(ξ)+b2 where g(ξ) is a well-behaved function, η and b stand for the position of the projection of the nearly singular point and the shortest distance from the calculation point to the element, respectively. The sinh transformation therefore can be employed in a straight-forward fashion. The proposed method is shown to have the same advantages as the previous sinh transformation, in that it is straight-forward to implement, very accurate and can be applied to a wide class of nearly singular integrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号