共查询到20条相似文献,搜索用时 10 毫秒
1.
《Diamond and Related Materials》2001,10(8):1515-1522
Field emission properties of tetrahedral amorphous carbon films prepared by filtered cathodic vacuum arc technique have been compared with different surface morphologies. With fewer cycles of conditioning, field emission from relatively rough granular ta-C films on nickel-coated silicon substrates was routinely improved, due to a local field enhancement resulting from both a ‘protrusion-on-protrusion’ geometry and a relatively high sp2 content in the film. A 2-MeV ion implantation machine was also employed to intentionally produce local graphitic channels in smooth ta-C films with a high fraction of sp3 content on bare silicon. A relatively low threshold field was obtained from the ta-C film implanted at a dose of 1012 cm−2, which still remained an extremely smooth surface. However, for the highly graphitic sample implanted with a higher dose of over 4×1013 cm−2, no electron field emission was observed, even under a very high electric field of 40 V μm−1. Therefore, a suitable sp2 content in an sp3 matrix, resulting in graphitic conductive channels in amorphous carbon films to produce a local field enhancement, may be the main factor in obtaining low threshold fields. Furthermore, protrusive structures could further increase the field enhancement factor, due to a ‘protrusion-on-protrusion’ geometry. 相似文献
2.
《Diamond and Related Materials》2006,15(9):1462-1466
Tetrahedral amorphous carbon (ta-C) film was coated on aligned carbon nanotube (CNT) films via filtered cathodic vacuum arc (FCVA) technique. Field electron emission properties of the CNT films and the ta-C/CNT films were measured in an ultra high vacuum system. The I–V measurements show that, with a thin ta-C film coating, the threshold electric field (Ethr) of CNTs can be significantly decreased from 5.74 V/μm to 2.94 V/μm, while thick ta-C film coating increased the Ethr of CNTs to around 8.20 V/μm. In addition, the field emission current density of CNT films reached 14.9 mA/cm2 at 6 V/μm, while for CNTs film coated with thin ta-C film only 3.1 V/μm of applied electric field is required to reach equal amount of current density. It is suggested that different field emission mechanisms should be responsible for the distinction in field emission features of CNT films with different thickness of ta-C coating. 相似文献
3.
Effect of nitrogen-implantation on electron field emission properties of amorphous carbon films has been examined. Raman and X-ray photoelectron spectroscopy measurements reveal different types of C-N bonds formed upon nitrogen-implantation. The threshold field is lowered from 14 to 4 V/μm with increasing the dose of implantation from 0 to 5 × 1017 cm−2 and the corresponding effective work function is estimated to be in the range of 0.01-0.1 eV. From the perspective of tetrahedron bond formation, a mechanism for the nitrogen-lowered work function is proposed, suggesting that both the nitrogen nonbonding (lone pair) and the lone-pair-induced carbon antiboding (dipole) states are responsible for lowering the work function and hence the threshold field. 相似文献
4.
《Diamond and Related Materials》2001,10(2):260-264
Field emission has been reported to occur at much lower fields in carbon based thin film systems than from any other material systems. The emission has been shown to depend on the various material parameters, but whichever carbon based system is used, it is found that emission occurs at localised sites rather than uniformly over the entire surface. Carbon films with mixed sp3/sp2 bonding, like nanocrystalline diamond and nanocluster graphitic films emit at lower fields with a higher emission site density than single-phase films. The sp2 cluster size in any carbon film can be altered during deposition, but it is easier to control nanocluster size by post-deposition annealing. Annealing increases the sp2 cluster size embedded in a sp3 matrix until the sp3 matrix disappears completely and the film transforms into nanocrystalline graphite. To distinguish the effects of the sp2 cluster size from other material parameters, a series of different carbon films were annealed post-deposition and the sp2 cluster size was measured using visible Raman. Field emission was then measured at a vacuum of 10−8 mbar on all films using a parallel plate configuration. It was found that the field emission for all films tested depended upon the clustering of the sp2 phase and this effect dominates the effects of the other parameters, such as chemical composition, surface termination, sp3 content or conductivity. The optimum size of the sp2 was of the order of 1 nm for all systems tested. We believe that field emission occurs form the localised conducting, predominantly sp2 bonded regions, which provideds the large field enhancement required for effective emission. 相似文献
5.
《Diamond and Related Materials》2007,16(4-7):735-739
Nanocrystalline diamond/amorphous carbon (NCD/a-C) nanocomposite films have been deposited by microwave plasma chemical vapour deposition (MWCVD) from CH4/N2 mixtures. The films have been thoroughly characterized by a variety of methods with respect to their composition, morphology, structure and bonding environment. Thereafter, the bioproperties of these films have been investigated. Tests with osteoblast-like cells and pneumocytes proved that the NCD/a-C films are not cytotoxic. In addition, exposure of the films to a simulated body fluid revealed that they are bioinert. Further experiments addressed the question whether biomolecules such as RNA or proteins bind unspecifically on the surfaces of NCD/a-C films. By means of atomic force microscopy (AFM) and scanning force spectroscopy measurements it was established that, in contrast to control experiments with mica and glass, no interaction between the nanocrystalline diamond and either RNA or protein molecules took place. The results of these experiments concerning the biologically relevant properties of NCD/a-C films are discussed in view of possible future applications, e.g. as a material for the immobilization of biomolecules and their characterization by AFM measurements and related techniques. 相似文献
6.
《Diamond and Related Materials》2006,15(1):171-175
Carbon nanotubes (CNTs) have been produced on silicon wafer by filtered cathodic vacuum arc technique using cobalt-containing graphite targets followed by thermal chemical vapor deposition. The Co-containing amorphous carbon (a-C:Co) composite films have various contents of Co as a catalyst for CNTs growth. It is found that dense and random CNTs were grown on the a-C:Co composite film deposited using a 2 at.% Co-containing graphite target and nanoforest CNTs on the composite films using 5, 10 and 15 at.% Co-containing targets. The nanoforest CNTs using a 15 at.% Co-containing target have very good field emission properties with a low threshold field of 1.6 V/μm and a high and stable current density of 2.1 mA/cm2 at 3 V/μm, which may result from the smaller diameter of CNTs. It is found that the field emission properties of the CNTs are significantly affected by the diameter of CNTs rather than its orientation. 相似文献
7.
C. Popov W. Kulisch S. Bliznakov G. Ceccone D. Gilliland L. Sirghi F. Rossi 《Diamond and Related Materials》2008,17(7-10):1229-1234
The surfaces of nanocrystalline diamond/amorphous carbon (NCD/a-C) nanocomposite films deposited from a 17% CH4/N2 mixture have been subjected to a variety of plasma and chemical treatments, namely H2 and O2 microwave plasmas, a CHF3 13.56 MHz plasma, and a chemical treatment with aqua regia (HCl:HNO3 3:1). The resulting surfaces have been studied with respect to their chemical nature by X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (TOF-SIMS), concerning their morphology with atomic force microscopy, and by contact angle measurements to study their hydrophobicity and their stability. As-grown surfaces are hydrogen terminated, but the number of C–H bonds can slightly be increased by a H2 microwave plasma, while treatment with aqua regia considerably lowers the number of C–H bonds at the surface. O2 and CHF3 plasmas, on the other hand, lead to a replacement of the terminating C–H bonds by C–O or C–OH and C–Fx groups, respectively. Finally, by contact angle measurements over a period of 150 days it could be shown that the H-terminated surface is very stable whereas the contact angle of the O-treated surface changed considerably with time, probably due to the adsorption of contaminants. 相似文献
8.
C. Popov W. Kulisch S. Boycheva K. Yamamoto G. Ceccone Y. Koga 《Diamond and Related Materials》2004,13(11-12):2071
Nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films have been prepared by microwave plasma chemical vapor deposition (MWCVD) from methane/nitrogen mixtures. The complex nature of the coatings required the application of a variety of complementary analytical techniques in order to elucidate their structure. The crystallinity of the samples was studied by selected-area electron diffraction (SAED). The diffraction patterns revealed the presence of diamond crystallites within the films. From the images taken by transmission electron microscopy (TEM) the crystallite size was determined to be on the order of 3–5 nm. The results were confirmed by X-ray diffraction (XRD) measurements exhibiting broad (111) and (220) peaks of diamond from which the average size of the crystallites was calculated. The grain boundary width is 1–1.5 nm as observed by TEM images which corresponds to a matrix volume fraction of about 40–50%. This correlates very well with the crystalline phase content of about 50% in the films estimated from their density (2.75 g/cm3 as determined by X-ray reflectivity). The bonding structure of the composite films was studied by electron energy loss spectroscopy (EELS) in the region of carbon core level. The spectra were dominated by a peak at 292 eV indicating the diamond nature of the investigated films. In addition, the spectra of NCD/a-C films possessed a shoulder at 284 eV due to the presence of a small sp2 bonded fraction. This phase was identified also by X-ray photoelectron spectroscopy (XPS). The sp2/sp3 ratio was on the order of 10% as determined by deconvolution of the C1s XPS peak. 相似文献
9.
F. Giubileo A. Di Bartolomeo M. Sarno C. Altavilla S. Santandrea P. Ciambelli A.M. Cucolo 《Carbon》2012,50(1):163-169
Multiwalled carbon nanotubes have been produced by ethylene catalytic chemical vapor deposition and used to fabricate thick and dense freestanding films (“buckypapers”) by membrane filtering. Field emission properties of buckypapers have been locally studied by means of high vacuum atomic force microscopy with a standard metallic cantilever used as anode to collect electrons emitted from the sample. Buckypapers showed an interesting linear dependence in the Fowler–Nordheim plots demonstrating their suitability as emitters. By precisely tuning the tip-sample distance in the submicron region we found out that the field enhancement factor is not affected by distance variations up to 2 μm. Finally, the study of current stability showed that the field emission current with intensity of about 3.3 × 10?5 A remains remarkably stable (within 5% fluctuations) for several hours. 相似文献
10.
Composite films of Cu and multiwalled carbon nanotubes (MWCNTs) were fabricated by an electrodeposition technique, and their field emission properties were examined. Commercially available MWCNTs with various diameters (60–150 nm) were used. The microstructure of the composite films was analyzed by scanning electron microscopy and the field emission properties were measured using a diode-type system. Cu/MWCNT composite films with homogeneous dispersion of MWCNTs were fabricated using each type of MWCNT. Bare MWCNTs were present on the surface of the composite films and the ends of the protruding tips were fixed by the deposited copper matrix. The composite films produced clear emission currents and the corresponding Fowler–Nordheim (F–N) plots showed that these were field emission currents. The turn-on electric field tended to decrease with decreasing MWCNT diameter. A light-emitting device incorporating the Cu/MWCNT composite film as a field emitter was fabricated, and its light-emitting properties were investigated. Light emission with a brightness of around 100 cd m?2 was observed for approximately 100 h. 相似文献
11.
Thickness dependency of the field emission of amorphous and nanostructured carbon thin films has been studied. It is found that in amorphous and carbon films with nanometer-sized sp2 clusters, the emission does not depend on the film thickness. This further proves that the emission happens from the surface sp2 sites due to large enhancement of electric field on these sites. However, in the case of carbon films with nanocrystals of preferred orientation, the emission strongly depends on the film thickness. sp2-bonded nanocrystals have higher aspect ratio in thicker films which in turn results in higher field enhancement and hence easier electron emission. 相似文献
12.
《Diamond and Related Materials》2004,13(1):133-138
Tetrahedral amorphous carbon (ta-C) films have been deposited by filtered cathodic vacuum arc technique. The samples were then annealed at various temperatures in nitrogen and acetylene ambient. The surface morphologies and microstructure of the films were characterized using atomic force microscopy, scanning electron microscopy, visible and ultraviolet Raman spectroscopy. A thin layer of amorphous carbon was deposited on the surface of the ta-C films after annealed at 700 and 800 °C while submicro crystalline pyrolytic graphite was formed on the surface of the ta-C film annealed at 900 °C. The surface layer was found to enhance the sp2 clustering of the underlying ta-C layer. Field emission results reveal that the sp2 cluster size plays an important role in electron field emission properties. The threshold field decreases as the sp2 cluster size increases. For the film annealed at 800 °C, the lowest threshold field and the largest cluster size concurred. 相似文献
13.
C. Popov H. Vasilchina W. Kulisch F. Danneil M. Stüber S. Ulrich A. Welle J.P. Reithmaier 《Diamond and Related Materials》2009,18(5-8):895-898
Ultrananocrystalline diamond/amorphous carbon (UNCD/a-C) composite films have been prepared by microwave plasma chemical vapour deposition (MWCVD) from 17% CH4/N2 mixtures and modified with O2 and CHF3 plasmas, which changed the surface termination from hydrogen to oxygen and fluorine, respectively. X-ray photoelectron spectroscopy (XPS) showed that successful oxidation and fluorination of the UNCD surface has been achieved with surface O or F concentrations of ca. 12 at.%. None of the plasma modification processes led to a change of the film topography as studied by atomic force microscopy (AFM); for all samples the rms roughness was in the range of 10–12 nm. The UNCD/a-C films with different terminations were characterized by contact angle measurements with water, formamide and benzyl alcohol; from the results obtained the surface energy was calculated. The adsorption of albumin and fibrinogen to the different UNCD/a-C samples was assessed by an inverted enzyme-linked immunosorbent assay (ELISA). The determined albumin/fibrinogen ratios, which could be used to evaluate the tendency of thrombus formation, are correlated with the surface properties of as-deposited and modified UNCD/a-C films. 相似文献
14.
Nanotubular structures composed of layered graphite sheets or other layered materials have been studied intensely by both scanning and transmission electron microscopy. In this paper, we will show how graphite structures, that are inherent to the production process of the amorphous carbon support films, used for both SEM and TEM studies can be easily mistaken for the actual sample structures. We will further report that these artifacts appear in both commercial as well as homemade holey carbon support films on copper grids, and suggest that to successfully study the “real” nanotubular structures only support films made from materials other than carbon should be used. 相似文献
15.
Regular arrays of carbon nanotubes (CNTs) are frequently used in studies on field emission. However, non-uniformities are always present like dispersions in height, radius, and position. In this report, we describe the effect of these non-uniformities in the overall emission current by simulation. We show that non-uniform arrays can be modeled as a perfect array multiplied by a factor that is a function of the CNTs spacing. 相似文献
16.
17.
Bojan Zajec Vincenc Nemani? Marko ?umer Eugene N. Bryan Robert J. Nemanich 《Carbon》2011,(10):3332-3339
Highly symmetric ring-shaped field emission patterns were observed from broad-area flat cathodes prepared by growing a film of vertically aligned carbon nanotubes (CNTs) on TiN coated Si substrates. The images were obtained utilizing a luminescent screen of a specially designed triode cell composed of parallel electrodes. The emission rings sporadically appeared during voltage scans in which the emission patterns and cathode currents were recorded. The fine structure and stability of the rings suggests that their formation is due to an emission state of an individual CNT. The observed patterns are consistent with models that predict the formation of emission rings produced by the inhomogeneous electron emission from CNTs. The macroscopic value of the electric field when the rings were observed was between 0.7 and 2.5 V/μm, and the emission current corresponding to individual rings was estimated to be in the range of 2–4 μA. Numerical simulation of electron trajectories for sidewall emission from similar shaped metallic structures is in qualitative and quantitative agreement with the experimentally observed ring-shaped field emission patterns. The results also appear consistent with a recent model [Marchand M, Journet C, Adessi C, Purcell ST. Phys Rev B 2009;80:245425] based on thermal-field emission due to Joule heating. 相似文献
18.
Multi-walled carbon nanotubes (MWCNTs) have been directly grown over a flexible graphitized carbon fabric by water assisted chemical vapor deposition. Field emission properties are compared with randomly oriented multi-walled and single walled carbon nanotube field emitters obtained by spin coating on to carbon fabric. The MWCNTs and single walled carbon nanotubes (SWCNTs) used in spin coating were characterized by X-ray diffraction (XRD) and Raman spectroscopy. High resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to characterize the field emitters. The use of graphitized carbon fabric as substrate has brought in flexibility in the fabrication of carbon nanotube field emitters. The samples show good field emission properties with a fairly stable emission current. Analysis of field emission based on the Fowler-Nordheim theory reveals current saturation effects at high applied fields for all the samples. 相似文献
19.
《Diamond and Related Materials》2006,15(9):1300-1309
In this work we studied the osteoblasts response to amorphous carbon (a-C) films deposited on stainless steel substrates with different surface textures. For osteoblasts cells, attachment to the substrate is the first step in the process of cell/surface interactions which affects subsequent cellular and tissue response. Amorphous carbon films are characterized by very smooth surfaces that imaged the surface roughness of the substrate and many of their applications rely on this property. However, in the biomedical field the cell response is strongly influenced by the topography and particularly, for osteoblasts cells it has been shown that rough surfaces enhances cellular attachment and differentiation. Therefore, in this work we modified the surface roughness of the substrate in order to obtain carbon films with different values of average surface roughness. The substrates were abraded or fine-polished to obtain four different average roughness: 0.01, 1.5, 2.1 and 3.5 μm. Surface topography before and after deposition of the a-C films was evaluated by profilometry and scanning electron microscopy (SEM), while chemical composition was determined by X-ray photoelectron spectroscopy. Human osteoblasts cells were used to evaluate the effect of the different surface finishes on the adhesion. The number of attached cells was determined by a colorimetric technique after 24 h of incubation, while morphological and cytoskeletal changes were monitored using SEM. The cellular attachment on a-C surfaces increases monotonically with the roughness attaining up to 160% more cells than the positive control. 相似文献
20.
Low operating electric field and stable emission current have been achieved on ordered carbon nanotube (CNT)-ZnO heterojunction arrays. Pyramid-like micropatterns were firstly prepared via capillarity-driven self-assembly from aligned CNT arrays, ZnO nanowires were subsequently grown via vapor-phase transport (VPT) method. Based on the effect of geometrical structure, low turn-on and threshold fields, and stable emission current were obtained. The high aspect ratio of ZnO nanowires leads to the high field enhancement factor. The optimal density of ZnO nanowires and the excellent interconnection between ZnO and CNT are beneficial to avoid the screening effect and improve the current stability. 相似文献