首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a zero‐voltage switching (ZVS) LLC resonant step up DC–DC converter with series‐connected primary windings of the transformer. The series resonant inverter in the proposed topology has two power switches (MOSFETs), two resonant capacitors, two resonant inductors, and only one transformer with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. Resonant capacitors and inductors along with the primary windings of the transformer form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with an interleaved half switching cycle. The secondary winding of transformer is connected to a bridge rectifier circuit to rectify the output voltage. The converter operates within a narrow frequency range below the resonance frequency to achieve ZVS, and its output power is regulated by pulse frequency modulation. The converter has lower conduction and switching losses and therefore higher efficiency. The experimental results of a 500‐W prototype of proposed converter are presented. The results confirm the good operation and performance of the converter. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A soft‐switching high step‐up DC‐DC converter with a single magnetic component is presented in this paper. The proposed converter can provide high voltage gain with a relatively low turn ratio of a transformer. Voltage doubler structure is selected for the output stage. Due to this structure, the voltage gain can be increased, and the voltage stresses of output diodes are clamped as the output voltage. Moreover, the output diode currents are controlled by a leakage inductance of a transformer, and the reverse‐recovery loss of the output diodes is significantly reduced. Two power switches in the proposed converter can operate with soft‐switching due to the reflected secondary current. The voltages across the power switches are confined to the clamping capacitor voltage. Steady‐state analysis, simulation, and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Bidirectional DC–DC converter with phase‐shift control is commonly used for hybrid electric vehicle and fuel‐cell vehicle applications. This converter is characterized by simple circuit topology and soft‐switching implementation without additional devices. Despite these advantages, the efficiency is poor at light load condition because of high switching and conduction losses caused by high RMS inductor current. To achieve zero‐voltage switching (ZVS) for all power MOSFETs, a constant offset inductor current is maintained to conduct the antiparallel body diodes before MOSFETs turn on. A control strategy of combining duty ratio and phase‐shift modulation is proposed to reach the constant offset current. By reaching the constant offset current, the RMS inductor current can be reduced significantly, and ZVS can be achieved in all load variation ranges, resulting in high efficiency. A 2.5‐kW prototype is implemented to verify the control scheme, and a minimum efficiency of 97.3% is achieved at light load condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A novel high‐efficiency transformerless buck–boost DC–DC converter is proposed in this paper. The presented converter voltage gain is higher than that of the conventional boost, buck–boost, CUK, SEPIC and ZETA converters, and high voltage gain can be obtained with a suitable duty cycle. The voltage stress across the power switch is low. Hence, the low on‐state resistance of the power switch can be selected to decrease conduction loss of the switch and improve efficiency. The input current ripple in the presented converter is low. The principle of operation and the mathematical analyses of the proposed converter are explained. The validity of the presented converter is verified by the simulation results in PSCAD/EMTDC software and experimental results based on the prototype circuit with 250 W and 40 kHz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a single lossless inductive snubber‐assisted ZCS‐PFM series resonant DC‐DC power converter with a high‐frequency high‐voltage transformer link for industrial‐use high‐power magnetron drive. The current flowing through the active power switches rises gradually at a turned‐on transient state with the aid of a single lossless snubber inductor, and ZCS turn‐on commutation based on overlapping current can be achieved via the wide range pulse frequency modulation control scheme. The high‐frequency high‐voltage transformer primary side resonant current always becomes continuous operation mode, by electromagnetic loose coupling design of the high‐frequency high‐voltage transformer and the magnetizing inductance of the high‐frequency high‐voltage transformer. As a result, this high‐voltage power converter circuit for the magnetron can achieve a complete zero current soft switching under the condition of broad width gate voltage signals. Furthermore, this high‐voltage DC‐DC power converter circuit can regulate the output power from zero to full over audible frequency range via the two resonant frequency circuit design. Its operating performances are evaluated and discussed on the basis of the power loss analysis simulation and the experimental results from a practical point of view. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(3): 79–87, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20126  相似文献   

7.
A high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter with ripple‐free input current is presented. In the presented converter, the ripple‐free boost cell provides ripple‐free input current and zero‐voltage switching of power switches. The resonant flyback cell provides zero‐voltage switching of power switches and zero‐current switching of the output diode. Also, it has a simple output stage. The proposed converter achieves high efficiency because of the reduction of the switching losses of the power switches and the output diode. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed and its experimental results are presented for validation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A step‐up pulse width modulation (PWM) direct current (DC)–DC converter is presented in this paper, which has its origin in quasi Z‐source inverter. Analysis of this converter in steady state is presented, and relevant expressions are derived for the proposed converter operating in continuous conduction mode. The power loss expressions for each component of the converter are derived, and thereby, obtained expressions for overall converter efficiency are presented. Further, a dynamic model is derived to design an appropriate controller for this converter. The simulation and experimental results are presented to support the theoretical analysis. The advantages such as continuous input current, high step‐up gain at lower duty ratio, and common ground for source, load, and switch makes the converter suitable for renewable energy applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The frequency‐domain‐based realization condition related to a novel non‐invasive chaos control is presented in this paper. According to the common piecewise‐linear characteristics of PWM‐controlled DC–DC converter system, a general expression for its Jacobian matrix is derived for optimizing the control parameters of the proposed non‐invasive chaos control. The relevant simulation and experiment results about the application of the chaos control to a voltage‐mode Buck converter are given, which confirm the feasibility of the parameter‐optimization method and the validity of the proposed non‐invasive chaos control. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new nonisolated free ripple input current bidirectional dc‐dc converter with capability of zero voltage switching (ZVS) is proposed. The free ripple input current condition at low voltage side is achieved by using third winding of a coupled inductor and a capacitor for the whole range of duty cycles. In the proposed structure, the voltage conversion ratio can be more increased by adding the turn ratio of the second winding of the coupled inductor for the whole range of duty cycles. By adjusting the value of an auxiliary inductor in the topology of the converter, according to the power, the ZVS operation of the implemented 2 switches can be achieved throughout the whole power range. The mentioned features of proposed converter are validated theoretically for both boost and buck operations. In this paper, the proposed converter is analyzed for all operating modes. Moreover, all equations of the voltages and currents of all components, voltage conversion ratio, the required conditions for ZVS operation of switches, and also required conditions for canceling input current ripple at low voltage side are obtained. Finally, the performance of the proposed converter is reconfirmed through experimental and EMTDC/PSCAD simulation results.  相似文献   

11.
12.
In this paper, a non‐isolated high step‐up dc‐dc converter based on coupled inductor is proposed. The proposed converter can be used in renewable energy applications. In suggested converter, the high voltage is achieved using 3‐winding coupled inductor, which leads to low voltage rate of the switch. A clamp circuit is used to recycle the leakage inductance energy. Also, the clamp circuit prevents the creation of voltage spikes on semiconductor devices and causes the voltage stress of elements are limited to less than the output voltage. The presented theoretical analyses show that the operation of suggested converter in continuous conduction mode needs to small magnetic inductor. Therefore, the size of coupled inductor's core is reduced, and so the size and cost of presented converter will be decreased. Analysis of the proposed converter is provided with laboratory results to verify its performance.  相似文献   

13.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

15.
A switch‐mode boost DC–DC converter has been developed to compensate for the IR‐drop because of the finite resistance of a charging cable. The boost ratio of the DC–DC converter is adaptively controlled by an IR‐drop sensing circuit to provide the required voltage level to a battery charger regardless of the cable resistance. Implemented in a 0.18 µm BCDMOS process, the IR‐drop compensating switch‐mode boost DC–DC converter occupies 6.2 mm2 active area and shows the 93.2% peak efficiency. The proposed IR‐drop compensating boost converter can be applied to compensate for the IR‐drop of any type of charging cables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A five‐element multiplex resonant (LLCLC) full‐bridge DC‐DC converter controlled by pulse frequency modulation (PFM) is proposed in this paper. The high frequency (HF)‐link resonant DC‐DC converter proposed herein can perform wide‐range output power and voltage regulation with a narrow frequency range due to an antiresonant tank that works effectively as a wide‐range variable inductor. The advantageous characteristics of the antiresonant tank provide overcurrent protection in the case of the short‐circuited load condition as well as in the startup interval. Thus, the technical challenges of a conventional LLC DC‐DC converter can be overcome, and the reliability of the relevant switch‐mode power supplies can be improved. The operating principle of the LLCLC DC‐DC converter is described, after which its performance is evaluated in an experimental setup based on the 2.5 kW prototype. Finally, the feasibility of the proposed DC‐DC converter is discussed from a practical point of view.  相似文献   

17.
This paper describes the electrical characteristics of a multilayered transformer composed of a Mn‐Zn ferrite core, and primary and secondary conductors positioned alternately not only in the vertical direction but also in the horizontal direction. In order to elucidate the operating characteristics of the two types of transformers, one was given the conventional planar winding structure and the other the new winding structure described above, and a two‐dimensional finite element method that took account of the two conditions and a constant input voltage and load current was introduced. The coupling coefficient of the conventional multilayered transformer deteriorated with increasing load current. But the coupling coefficient of the proposed multilayered transformer was independent of the load current. A forward‐type DC–DC converter using the new multilayered transformer had higher efficiency than a converter using the conventional multilayered transformer. © 2001 Scripta Technica, Electr Eng Jpn, 135(4): 1–8, 2001  相似文献   

18.
The dual active bridge (DAB)‐based isolated bidirectional converter has been used to realize bidirectional energy flow while offering needed isolation between the primary and secondary side: for example, the battery side and grid side of one plug‐in hybrid electric vehicle (PHEV). Even though the operation of a DAB‐based DC–DC converter is straightforward, various transient processes exist, such as the dead‐band effect, which deeply affects the dynamic performance of the converter in real world applications. Compensation of this effect is not easy because of the strong nonlinearity of the entire system. This paper quantitatively analyzed the dead‐band effect at different output powers, and presented a model‐based controller to realize the nonlinear dead‐band compensation strategy, which can effectively mitigate demerits of the traditional PI‐based control strategy. The proposed control algorithm is validated through theoretical simulation and experimental results. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

19.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a modular nonisolated noncoupled inductor‐based high‐voltage gain multi‐input DC‐DC converter. Despite the high‐voltage gain of the proposed topology, the average of normalized voltage stress (NVS) on its switches/diodes is low. This property leads to less loss and cost of switches/diodes. Using the same number of components, the proposed topology produces higher voltage gains, in comparison with recently presented high step‐up topologies. Also, the proposed topology utilizes less number of components (capacitors, inductors, diodes, and switches) for producing a desired voltage gain, which can reduce the size, mass, cost, complexity, and losses and improve the efficiency of converter. Continuous current of input sources is another main advantage of the proposed topology. All the abovementioned characteristics have made the proposed topology very suitable for renewable energy systems (or even hybrid/electric vehicles). Design considerations of the proposed topology have also been presented. For better evaluation, the proposed topology has been compared with some of recently presented high step‐up structures, from viewpoints of producible voltage gain, number of components, and normalized voltage stress (NVS) on switches/diodes. Finally, the prototype of 2‐input version has been experimentally implemented. Obtained experimental results confirm appropriate performance of the proposed topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号