首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

2.
The dielectric barrier discharge (DBD) is often used to prepare ozone. In this study, a novel room temperature oxidative desulfurization method involving ozone oxidation produced in the DBD reactor combined with ionic liquid (IL) [BMIM]CH3COO ([BMIM]Ac) extraction was developed. The method was suitable for the deep removal of sulfur (S)-containing compounds from model fuel. By this desulfurization technology, 4,6-dimethyldibenzothiophene (4,6-DMDBT), dibenzothiophene (DBT), benzothiophene (BT) and thiophene (TS) were efficiently removed. Normally, the removal of TS and BT from fuel is highly difficult. However, using the proposed method of this study without any catalyst, the removal rate of TS and BT reached 99.9%. When TiO2/MCM-41 was used as a catalyst, the S-removal of DBT and 4,6-DMDBT increased to 98.6 and 95.2%, respectively. The sulfur removal activity of the four sulfur compounds decreased in the order of TS > BT >> DBT > 4,6-DMDBT.  相似文献   

3.
The hydrodesulfurization (HDS) of the highly refractory sulfur-containing compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the effect of the basic and non-basic nitrogen heterocyclic compounds, such as quinoline and carbazole, on HDS using a dispersed unsupported Mo catalyst and in situ generated hydrogen were studied. Experimental results indicated that the dispersed unsupported Mo catalyst was effective for the HDS of 4,6-DMDBT in a mixture containing DBT. The direct desulfurization pathway (DDS) was the preferred pathway for the HDS of DBT while the hydrogenation pathway (HYD) was the preferred pathway for the HDS of 4,6-DMDBT under our experimental conditions. A strong inhibitive effect of the basic quinoline or the non-basic carbazole on the HDS of each of the sulfur-containing compounds was observed. The DDS and HYD pathways in the HDS of the refractory sulfur-containing compounds were affected to a different extent by the nitrogen-containing compounds, suggesting that different active sites were involved in these two reaction pathways.  相似文献   

4.
A hydrogenation index (HI), measured in the hydrodesulfurization (HDS) of dibenzothiophene (DBT), is used to estimate the intrinsic hydrogenation selectivities of MoS2, Co0.1MoS2, and two supported HDS catalysts. The HI and catalyst activity for desulfurizing 4,6-diethyl-DBT follow the same trend: MoS2 ? Co0.1MoS2 ? supported catalysts. For desulfurizing a petroleum fraction rich in 4,6-alkyl-DBTs and 4-alkyl-DBTs, the activity decreases as follows: Co0.1MoS2 > supported catalysts ? MoS2. These results introduce an apparent conundrum: MoS2 has such a high hydrogenation power and activity for desulfurizing 4,6-diethyl-DBT, why does it perform poorly in real-feed tests? This conundrum is resolved by showing that an ultra-deep HDS catalyst requires an optimum balance between an intrinsic factor (hydrogenation function) and an environmental factor (tolerance of organonitrogen). Incorporating Co into MoS2 lowers the hydrogenation function of MoS2 and hence improves tolerance of organonitrogen. This conclusion corroborates the prediction of an early modeling study.  相似文献   

5.
A one-step synthesized Ni-Mo-S catalyst supported on SiO2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBT and 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenation-desulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBT and 4,6-DMDBT and insufficient acidic sites on the catalyst surface.  相似文献   

6.
The performance of a new type of CoMoS/Al2O3 catalyst, with added fluorine and prepared by sonochemical and chemical vapor deposition (CVD) methods, was investigated in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The catalyst, which was designed to contain optimum amounts of fluorine and cobalt, exhibited a higher activity, ca. 4.6 times higher activity particularly in the HDS of 4,6-DMDBT, than a fluorine-free catalyst prepared by a conventional impregnation method. The enhanced activity of the new catalyst can be attributed to the cumulative effects of individual factors involved in the catalyst preparation. That is, the use of a sonochemical synthesis led to a high dispersion of small MoS2 crystallites on the alumina, and the addition of the Co species to the catalyst by CVD caused a close interaction between the Co species and the MoS2 crystallites to produce numerous CoMoS species, which are the catalytically active species for HDS. The addition of fluorine increased the amounts of acidic sites in the catalyst, which promoted hydrogenation (HYD) route to a greater extent than the direct desulfurization (DDS) route in DBT HDS and both HYD and DDS routes to similar extents in the case of 4,6-DMDBT HDS. Accordingly, the addition of fluorine led to a greater increase in catalytic activity for 4,6-DMDBT HDS than for DBT HDS.  相似文献   

7.
The hydrodesulfurization (HDS) of dibenzothiophene (DBT) and of 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out on sulfided Mo and CoMo on HY catalysts, and also on sulfided Mo and CoMo on alumina catalysts (fixed bed reactor, 330°C, 3 MPa hydrogen pressure). On all the catalysts, the two reactants transformed through the same parallel pathways: direct desulfurization (DDS) leading to biphenyl-type compounds, and desulfurization after hydrogenation (HYD) leading first to tetrahydrogenated intermediates, then to cyclohexylbenzene-type products. However, additional reactions were observed with the zeolite-supported catalysts, namely methylation of the reactants, cracking of the desulfurized products, and, in the case of 4,6-DMDBT, displacement of the methyl groups and transalkylation. The global activity of Mo/zeolite in DBT or 4,6-DMDBT transformation as well as its activity for the production of desulfurized products (HDS) were much higher than those of Mo/alumina. On the other hand, cobalt exerted a promoting effect on the activity in the transformation of DBT or 4,6-DMDBT of all the molybdenum catalysts. However, this effect was much less significant with the zeolite support than with the alumina support, which indicated that the promoter was not well associated to molybdenum on the zeolite support. Therefore, the activity of CoMo/zeolite in the HDS of DBT was much lower than that of CoMo/alumina. On the contrary, in the case of 4,6-DMDBT CoMo/zeolite was more active in HDS than CoMo/alumina. This increase in HDS activity was attributed to the transformation of 4,6-DMDBT into more reactive isomers through an acid-catalyzed methyl migration. The consequence was that on the zeolite-supported catalyst 4,6-DMDBT was more reactive than DBT.  相似文献   

8.
Five catalysts with different hydrodesulfurization (HDS) and hydrogenation activity were tested in HDS of fresh crude heavy atmospheric gas oil (HAGO) (1.33 wt% S), two partially hydrotreated HAGO (1100 and 115 ppm S) and two model compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT), dissolved in model solvents and HAGO. Aromatic compounds in the liquid decreased significantly the HDS rate of 4,6-DMDBT, especially for catalysts with high hydrogenation activity. H2S displayed a similar inhibition effect with all catalysts. These effects were extremely pronounced in HAGO where the DBT HDS rate decreased by a factor of 10 while 4,6-DMDBT – of 20 relative to paraffinic solvent. The feasibility of using a highly active hydrogenation catalyst for deep HDS of HAGO is diminished by the strong impact of aromatics.  相似文献   

9.
Jinwen Chen  Zbigniew Ring 《Fuel》2004,83(3):305-313
The hydrodesulfurization (HDS) reactivities and the inhibition effects of H2S and NH3 were experimentally investigated for 11 difficult-to-remove sulfur compounds contained in LC-finer light gas oil using a commercial NiMo/Al2O3 hydrotreating catalyst. Among these sulfur compounds, 4-MDBT was the most reactive while 4,6-DMDBT was the least reactive. It was found that the presence of methyl groups away from the sulfur atom slightly enhanced the HDS reactivities of the methyl substituted DBTs. The observed low reactivity of 4,6-DMDBT was mainly caused by the steric hindrance of the two methyls at the 4 and 6 positions. Both H2S and NH3 significantly inhibited the HDS reaction rates for all 11 sulfur species of interest, while 4,6-DMDBT was one of the most inhibited species. At the same concentration (1.0 vol%), H2S showed a stronger inhibition effect than NH3. Measurable catalyst deactivation was observed in the course of the experiment that had a relatively even effect on the HDS of all reactants investigated in this study.  相似文献   

10.
The hydrotreating of a real light gas oil feedstock over a commercial NiMo catalyst has been investigated in a pilot plant reactor operating at industrial conditions. The sulfur containing species in the oil and hydrotreated product have been characterized using a sulfur-sensitive gas chromatography technique, and the behavior of several individual components has been followed. The slow-reacting components all belong to the class of dibenzothiophenes, like dibenzothiophene (DBT), 4-methyl-DBT (4-MDBT) and 4,6-dimethyl-DBT (4,6-DMDBT). The individual kinetic behavior of these components was analyzed, and pseudo-first-order rate constants were obtained. The relative rates of HDS decrease in the order DBT>4-MDBT>4,6-DMDBT, the ratio between the rates of these components is shown to be strongly dependent on the reaction temperature. The behavior of 4,6-DMDBT with increasing temperature indicates a limitation on the HDS rate in an agreement with a reversible reaction, suggesting this component has to be hydrogenated before the carbon–sulfur bond is broken.  相似文献   

11.
A series of NiMo catalysts supported on HNaY(x)–Al2O3 composites with different amounts of HNaY zeolite (x = 0, 5, 10, 20 and 100 wt.% of HNaY) was prepared and tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyl-DBT (4,6-DMDBT). The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), FT-IR spectroscopy of pyridine and nitrogen oxide adsorption (Py and NO-FT-IR), temperature-programmed reduction (TPR), scanning electron microscopy (SEM-EDX) and high-resolution transmission electron microscopy (HRTEM). It was found that the increase in the zeolite content causes changes in the acidic properties of the catalyst (number of acid sites) as well as in the characteristics of the deposited metallic species (location and dispersion). Different activity trends with the amount of the zeolite were found for the DBT and 4,6-DMDBT hydrodesulfurization on NiMo/HNaY-Al2O3 catalysts. As for the HDS of DBT the alumina-supported catalyst presents the highest activity. The incorporation of the zeolite causes an initial drop and then the recovery of activity with zeolite content. In contrast, for the 4,6-DMDBT the HDS activity always increases with zeolite content. These two different catalytic behaviors seem to be due to two opposite effects, which affect the contribution of the reaction routes available for the HDS of each reactant, these effects are: (i) the decrease of MoS2 dispersion caused by the incorporation of zeolite to the catalyst and (ii) the increase of the proportion of Brönsted acid sites with zeolite content. The reaction product distribution indicates that both types of sites, coordinatively unsaturated sites (CUS) of the MoS2 and zeolite Brönsted acid sites, participate in the 4,6-DMDBT and DBT transformations.  相似文献   

12.
CoMoS/Al2O3 catalysts containing different amounts of fluorine have been tested for the hydrodesulfurization (HDS) of dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the results have been analyzed based on three fundamental reactions involved in the HDS mechanism: hydrogenation of the aromatic ring, hydrogenolysis of the C–S bond, and migration of methyl groups in the ring structure. Fluorine addition to the catalyst promotes all of these three reactions due to the enhancement of two factors: the metal dispersion and the catalyst acidity. The extents that the HDS rates are improved by fluorine addition increase in the order of DBT<4-MDBT<4,6-DMDBT. Product distributions change in characteristic trends with fluorine addition depending on the individual reactants. That is, in DBT HDS, CHB obtained by the ring saturation is enhanced more than BP produced by the direct desulfurization, while the opposite trend is observed in 4-MDBT HDS. 4,6-DMDBT HDS shows an intermediate trend: products of both types are promoted to similar extents on fluorinated catalysts. The migration of methyl groups in the reactant ring structure due to the catalyst acidity, which reduces the steric hindrance to the C–S bond, is responsible for the characteristic trends in the product distribution observed with the individual reactants.  相似文献   

13.
The hydrodesulphurization (HDS) of dibenzothiophene (DBT), 4-methyl dibenzothiophene (4 M-DBT), 4,6-dimethyl dibenzothiophene (4,6 DM-DBT) and 4,6-diethyl dibenzothiophene (4,6 DE-DBT) as real gas oil components on NiMo/Al2O3 catalyst was investigated. On the basis of the first order rate constants of HDS of the individual sulphur compounds reactivities of the investigated compounds decreased in the order DBT ≫ 4 M-DBT > 4,6 DE-DBT ≈ 4,6 DM-DBT. Apparent activation energies of HDS of above sulphur compounds increased from 80.0 to 120.5 kJ/mol.  相似文献   

14.
Sorbents with different Ni loading supported on silica–alumina (SiAl) and activated carbon (AC) were synthesized and tested for removal of sulfur compounds from a model diesel oil, containing nearly 250 ppmw S as benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). A state-of-art Commercial Ni-based sorbent and two Norit activated carbons were also tested for comparison. Moreover, the influence on sorbents uptake capacity of the presence of aromatics in amounts representative of real diesel oils was studied. Both commercial and home-made materials performed worse in presence of aromatic compounds. Probably, the latter competed with the refractory sulfur compounds (DBT and 4,6-DMDBT) in the adsorption on active sites. As a first important result of the investigation the sorbents carrying 45% and 30% of Ni on SiAl showed a breakthrough uptake capacity of nearly, respectively, 2 and 2.6 times higher than Commercial sorbent as a consequence of their higher Ni dispersion and surface area. Moreover, activated carbons and the sample with 28%Ni on AC showed an even higher breakthrough uptake capacities. In particular, the deposition of nickel on activated carbon is an innovative approach which takes advantage of the selectivity of Ni towards S-species and the high adsorptive capacity of AC support.  相似文献   

15.
V-Mo based catalysts for oxidative desulfurization of diesel fuel   总被引:1,自引:0,他引:1  
Catalytic oxidative desulfurization (ODS) of a Mexican diesel fuel on a spent HDS catalyst, deactivated by metal deposits, was carried out during several reactive-batch cycles in order to study the catalytic performance to obtain low sulfur diesel. To explain catalytic activity results, Mo and/or V oxides supported on alumina pellets were prepared and evaluated in the ODS of a model diesel using tert-butyl hydroperoxide (TBHP) or H2O2 as oxidant. The catalytic results show that V-Mo based catalysts are more active during several ODS cycles using TBHP. The performance of the catalysts was discussed in terms of reduced species of vanadium oxide, prevailing on the catalysts, which increase the sulfone yield of refractory HDS compounds (DBT, 4-MDBT and 4,6-DMDBT).  相似文献   

16.
Two series of alumina-supported molybdenum phosphide (MoP) catalysts with low and high metal loadings were prepared by temperature-programmed reduction of the oxidic catalyst precursors in hydrogen to different temperatures (823, 923, 1023 and 1123 K, respectively). Effects of reduction temperature and metal loading on the surface distribution and the type of species formed were studied by TPR, SBET, XRD, HRTEM, 31P NMR, 27Al NMR and in the reaction of dibenzothiophene (DBT) hydrodesulfurization (HDS) performed in a flow reactor at 553 K and total hydrogen pressure of 3.4 MPa. HRTEM and 31P NMR confirmed formation of MoP phase on all catalysts. The 9.9 wt% Mo catalyst activated at lowest reduction temperature (823 K) was found to be most active among the catalysts studied. The presence of a low amount of Mo0 species on the surface of this catalyst does not appear to be a drawback for the catalytic activity. The increase in both metal loading (from 9.9 to 15 wt% Mo and from 3.2 to 4.8 wt% P) and reduction temperature (from 823 to 1123 K) was found to be detrimental for HDS activity due to sintering of active phase, and also to decrease in specific area and formation of phosphate species.  相似文献   

17.
Through modeling of the transient response of dibenzothiophene (DBT) hydrodesulfurization (HDS) to inhibition by 3-ethylcarbazole (3ECBZ), the hydrogenation (HYA) and hydrogenolysis (HYL) functions of a sulfided CoMo/Al2O3–SiO2 catalyst are characterized. The HYL sites, accounting for about one third of the total active sites, have a lower adsorption affinity for 3ECBZ than for DBT. The opposite is true for the HYA sites. The adsorbed nitrogen species are denitrogenated more rapidly on the HYL sites than on the HYA sites. As a result, the HYL sites are less inhibited by 3ECBZ and drive the HDS of DBT almost single-handedly in the presence of 3ECBZ. The catalyst surface is sparsely occupied by sulfur species because the HDS rate is much faster than the hydrodenitrogenation rate on both HYA and HYL sites. These results give a quantitative understanding of why 3ECBZ is a far weaker inhibitor to the HDS of DBT than it is to the HDS of 4,6-diethyldibenzothiophene. There appears a tradeoff between the HYA and HYL functions, which can be exploited for HDS catalyst and process optimization.  相似文献   

18.
Gas oils obtained from Arabian Light (AL-GO), Arabian Medium (AM-GO) and Arabian Heavy (AH-GO) crude oils were subjected to detailed analysis in terms of reactive and refractory sulfur, nitrogen, as well as aromatic species. Deep hydrodesulfurization (HDS) of these gas oils over SiO2–Al2O3-supported CoMo and NiMo catalysts was studied using autoclave reactor either in one- or two-stage operations. AL-GO was easily and deeply desulfurized to 15 ppm over CoMo/Al2O3–SiO2 (catalyst X) at 340 °C and 5 MPa (H2) for 2 h. At the same conditions, AM-GO and AH-GO could be desulfurized to 70 and 78 ppm, respectively. Two-staged HDS, by combining CoMo and NiMo catalysts, in successive steps resulted in effective deep HDS. The replacement of hydrogen atmosphere after the first-stage (1 h) enhanced the AH-GO HDS during the second-stage (1 h) to 9 ppm. However, replacing the hydrogen in the second-stage with 5% H2S in hydrogen inhibited the HDS, resulting in product sulfur content of 15 ppm. Analysis of sulfur species indicate that significant fraction of reactive and refractory sulfur species were removed during the first-stage whereas the remaining refractory sulfur species were removed during the second-stage. Kinetic analysis indicates overwhelming influence of refractive sulfur species on the overall HDS. The results from this study show that two-stage scheme with optimum catalysts in series can be applied to overcome the difficulty to achieve deep HDS of AH-GO.  相似文献   

19.
The need for more complete removal of sulfur from fuels is due to the lower allowable sulfur content in gasoline and diesel, which is made difficult by the increased sulfur contents of crude oils. This work reports an experimental study on the hydrodesulfurization (HDS) of diesel in a slurry reactor. HDS of straight-run diesel using a NiMoS/Al2O3 catalyst was studied in a high-pressure autoclave for the following operating conditions: 4.8–23.1 wt% catalyst in the reactor, 320–360 °C, 3–5 MPa pressure, and 0.56–2.77 L/min hydrogen flow rate. It was found that the reaction rate was proportional to the catalyst amount and increased with temperature, pressure and hydrogen flow rate. The reaction kinetics for the HDS reaction in the slurry reactor was obtained. As compared with HDS in a fixed bed reactor, HDS in a slurry reactor is promising because of the uniform temperature profile, high catalyst efficiency, and online removal and addition of catalyst.  相似文献   

20.
Yuying Shu 《Carbon》2005,43(7):1517-1532
A series of nickel, molybdenum, and tungsten metal phosphides deposited on a carbon black support (Ni2P/C, MoP/C, and WP/C) were synthesized by means of temperature-programmed reduction. The samples were characterized by BET surface area, CO uptake, X-ray diffraction (XRD), elemental analysis, and extended X-ray absorption fine structure (EXAFS) measurements. The activity of these catalysts was measured at 613 K and 3.1 MPa in a three-phase, packed-bed reactor for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) with a model liquid feed containing 500 ppm sulfur as 4,6-dimethyldibenzothiophene (4,6-DMDBT), 3000 ppm sulfur as dimethyl disulfide, and 200 ppm nitrogen as quinoline. The Ni2P/C catalyst was found to exhibit the best hydroprocessing performance based on equal CO chemisorption sites (70 μmol) loaded in the reactor. An optimum Ni loading for HDS and HDN activity was found as 1.656 mmol g−1 (11.0 wt.% Ni2P) which gave an HDS conversion of 99% and an HDN conversion of 100% at a molar space velocity of 0.88 h−1. These were much higher than those of a commercial Ni-Mo-S/γ-Al2O3 catalyst which gave an HDS conversion of 68% and an HDN conversion of 94%, and a previously reported best Ni2P/SiO2 catalyst which gave an HDS conversion of 76% and an HDN conversion of 92%. The use of carbon instead of silica as a support gave rise to other differences, which included smaller particle size, higher CO uptake, lessened retention of P on the support, and reduced sulfur deposition. The stability of the 11.0 wt.% Ni2P/C catalyst was also excellent with no deactivation observed over 110 h of time on stream. The activity and stability of the Ni2P/C catalyst were affected by the phosphorous content, both reaching a maximum with an initial Ni/P ratio of 1/2. EXAFS and elemental analysis of the spent samples indicated the formation of a surface phosphosulfide phase on the Ni2P, which was beneficial for hydrotreating activity, while the bulk structure of the phosphides was maintained during the course of reaction as revealed from the XRD patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号