首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper presents an identification technique of parameters of a high‐frequency equivalent circuit of permanent magnet synchronous motors (PMSM) driven by a PWM inverter. The high‐frequency oscillatory currents such as leakage current to the motor frame (common‐mode current) and high‐frequency oscillatory line current (normal‐mode current) are generated by switching instants of inverter transistors. The parameters of the high‐frequency equivalent circuit of PMSM which can simulate the oscillating current are identified by means of genetic algorithm. It is shown that the high‐frequency equivalent circuit with identified parameters can generate the oscillating current by some simulation results. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(4): 57–66, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20717  相似文献   

2.
This paper presents a design methodology for common‐mode (CM) stability of operational transconductance amplifier (OTA)‐based gyrators. The topology of gm ? C active inductors is briefly reviewed. Subsequently, a comprehensive mathematical analysis on the CM stability of OTA‐based gyrators is presented. Sufficient requirements for the gyrator's CM stability, which easily can be considered during the design process of common‐mode feedback (CMFB) amplifiers, are defined. Based on these stability requirements, a design methodology and a design procedure are proposed. Finally, in order to validate the proposed procedure, a resonator with 20 MHz resonance frequency and a quality factor of 20 is fabricated with UMC 180 nm complementary metal‐oxide‐semiconductor technology, and its CM stability is examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the high‐frequency equivalent circuits in an induction motor driven by a PWM inverter. The leakage current flows through stray capacitance among stator windings and iron core (frame) of the induction motor at the switching instants of the inverter transistors. The high‐frequency equivalent circuits are derived based on the frequency characteristics of the high‐frequency zero‐phase impedance and line‐to‐line impedance of the induction motor. The validity of the derived equivalent circuits is confirmed by simulation and experimental results. © 2001 Scripta Technica, Electr Eng Jpn, 135(1): 65–76, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号