首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hot‐potato routing is a border gateway protocol policy that selects the ‘closest’ egress router in terms of interior gateway protocol cost. This policy imposes inherent interactions between intra‐AS (Autonomous System) and inter‐AS traffic engineering. In light of this observation, we present a hybrid intra‐AS and inter‐AS traffic engineering scheme named egress selection based upon hot potato routing. This scheme involves link weight optimization, which can not only minimize the time that IP (Internet Protocol) packets travel across the network by assigning specified egress router but also balance the load among the internal links of the transit network. Egress selection based upon hot potato routing also incorporates multi‐topology routing technique to address the problem that one set of link weights might not guarantee specified egress routers. Accordingly, we formulate the link weights optimization problem using multi‐topology routing as a mixed integer linear programming model. And we present a new heuristic algorithm to make the problem tractable. Numerical results show that only a few topologies are needed to guarantee specified egress router, and maximum link utilization is also reduced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Wireless mesh networks (WMNs) have gained considerable popularity in recent times thanks to their self‐healing, self‐organizing, and self‐configuring nature. Because of their ability to provide high throughput and minimum packet delay, WMNs are considered to be favorable for broadband applications. For such applications, WMNs employ multiple channels, which give rise to issues like channel assignment, load balancing, and interference avoidance. Most of these issues fall into two broad categories, namely routing and channel assignment. For routing, we propose a novel proactive protocol, the stable‐path multi‐channel routing protocol (SMRP). Our proposed solution, to address channel assignment, is the extended level‐based channel assignment (ELCA) scheme. SMRP is designed to work in combination with ELCA in order to minimize interference and balance the load among the underlying nodes. Simulation results show enhanced throughput and minimal packet delay as compared with the contemporary schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

4.
In this paper, an orthogonal frequency division multiple access (OFDMA)‐based minimum end‐to‐end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type‐I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end‐to‐end delay and support highly reliable routing using only local information of neighbor nodes.  相似文献   

5.
Although Cognitive Radio technology brings efficient spectrum usage and effective interference avoidance, it also brings new challenges to routing in multi-hop Cognitive Radio Networks. Firstly, spectrum assignment is required for each hop in routing; secondly, new delay is introduced during multi-frequency scheduling and frequency switching in each node; thirdly, the intersecting nodes serving multi-frequency traffic is easy to be bottleneck in neighborhood region. In this paper, we analysis and model the per-node delay and the path delay in multi-hop Cognitive Radio Network. Then we propose a framework of local coordination based routing and spectrum assignment to solve above problems, which consists of one protocol for routing path and one scheme for neighborhood region. A on-demand Routing and Spectrum Assignment Protocol is proposed to exchange the local spectrum information and interact with multi-frequency scheduling in each node. A local coordination scheme is presented to support flow redirection at an intersecting node and distribute heavy multi-frequency workload to its neighborhood. We prove the correctness and effectiveness of the protocol by thorough simulations, and find that the proposed solution provides good adaptability to varying spectrum distribution. The end-to-end delay when adaptive relay is cooperating with routing protocol outperforms traditional bare-routing solutions.  相似文献   

6.
In wireless mesh networks (WMNs), real time communications (e.g., Voice over IP (VoIP) and interactive video communications) may often be interrupted as packets are frequently lost or delayed excessively. This usually happens due to the unreliability of wireless links or buffer overflows along the routing paths. The mesh connectivity within the WMN enables the capability to enhance reliability and reduce delay for such applications by using multiple paths for routing their packets. The vital components in multi‐path routing for achieving this are the pre‐determined formation of paths and the technique that the paths are deployed for packet traversal. Therefore, we propose a novel multi‐path routing protocol by introducing a new multi‐path organization and a traffic assignment technique. The designed technique dubbed as FLASH (Fast and reLiAble meSH routing protocol) discovers one primary path between a pair of source and destination based on a new proposed metric, and thereafter selects mini‐paths, which connect pairs of intermediate nodes along the primary path. The primary path and mini‐paths are concurrently deployed, as multiple copies of packets are routed through. This technique compensates for possible outage at intermediate wireless nodes or their corresponding wireless links along the primary path. Routing along mini‐paths is performed in such a way that redundant copies do not cause an excessive congestion on the network. The effectiveness of the proposed scheme is evaluated analytically and through extensive simulations under various load conditions. The results demonstrate the superiority of the proposed multi‐path organization in terms of reliability and satisfactory achievements of the protocol in enhancing delay and throughput compared to the existing routing protocols, especially for long distances and in congested conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
According to the disadvantages of real time and continuity for multimedia services in ad hoc networks, a delay constraint multipath routing protocol for wireless multimedia ad hoc networks, which can satisfy quality of service (QoS) requirement (QoS multipath optimized link state routing [MOLSR]), is proposed. The protocol firstly detects and analyzes the link delay among the nodes and collects the delay information as the routing metric by HELLO message and topology control message. Then, through using the improved multipath Dijkstra algorithm for path selection, the protocol can gain the minimum delay path from the source node to the other nodes. Finally, when the route is launched, several node‐disjoint or link‐disjoint multipaths will be built through the route computation. The simulation and test results show that QoS‐MOLSR is suitable for large and dense networks with heavy traffic. It can improve the real time and reliability for multimedia transmission in wireless multimedia ad hoc networks. The average end‐to‐end delay of QoS‐MOLSR is four times less than the optimized link state routing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A traffic matrix can exhibit the volume of network traffic from origin nodes to destination nodes. It is a critical input parameter to network management and traffic engineering, and thus it is necessary to obtain accurate traffic matrix estimates. Network tomography method is widely used to reconstruct end‐to‐end network traffic from link loads and routing matrix in a large‐scale Internet protocol backbone networks. However, it is a significant challenge because solving network tomography model is an ill‐posed and under‐constrained inverse problem. Compressive sensing reconstruction algorithms have been well known as efficient and precise approaches to deal with the under‐constrained inference problem. Hence, in this paper, we propose a compressive sensing‐based network traffic reconstruction algorithm. Taking into account the constraints in compressive sensing theory, we propose an approach for constructing a novel network tomography model that obeys the constraints of compressive sensing. In the proposed network tomography model, a framework of measurement matrix according to routing matrix is proposed. To obtain optimal traffic matrix estimates, we propose an iteration algorithm to solve the proposed model. Numerical results demonstrate that our method is able to pursuit the trace of each origin–destination flow faithfully. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In the context of multi‐protocol label switching (MPLS) traffic engineering, this paper proposes a scalable constraint‐based shortest path first (CSPF) routing algorithm with multiple QoS metrics. This algorithm, called the multiple constraint‐based shortest path first (M_CSPF) algorithm, provides an optimal route for setting up a label switched path (LSP) that meets bandwidth and end‐to‐end delay constraints. In order to maximize the LSP accommodation probability, we propose a link weight computation algorithm to assign the link weight while taking into account the future traffic load and link interference and adopting the concept of a critical link from the minimum interference routing algorithm. In addition, we propose a bounded order assignment algorithm (BOAA) that assigns the appropriate order to the node and link, taking into account the delay constraint and hop count. In particular, BOAA is designed to achieve fast LSP route computation by pruning any portion of the network topology that exceeds the end‐to‐end delay constraint in the process of traversing the network topology. To clarify the M_CSPF and the existing CSPF routing algorithms, this paper evaluates them from the perspectives of network resource utilization efficiency, end‐to‐end quality, LSP rejection probability, and LSP route computation performance under various network topologies and conditions.  相似文献   

10.
In vehicular ad hoc networks, vehicles may use a routing protocol to inform emergent events, for example, car accidents or traffic jams. Hence, many of the researchers are focused on minimizing the end‐to‐end delay of the routing protocol. However, some applications, for example, email or ftp, are not time critical, and radio spectrum is a limited resource. Hence, delay‐bounded routing protocol, whose goal is to deliver messages to the destination within user‐defined delay and minimize the usage of radio, has become an important issue. The delay‐bounded routing protocols deliver message to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). When the available time is enough, the message will be delivered by muling; otherwise, it will be delivered by forwarding. However, in an urban area, there are many traffic lights, which may greatly affect the performance of the delay‐bounded routing protocols. Existing works do not consider the effect of traffic lights, and hence, it may adopt an improper delivery strategy and thus wastes much available time. To improve previous works, we propose a novel delay‐bounded routing protocol, which has considered the effect of traffic lights. Whenever a vehicle passes an intersection, it will gather the information of the traffic light and traffic load of the next road section, and thus, it can make a more accurate prediction and adopt a more proper strategy to deliver message. Simulation results show that the proposed protocol can make a better usage of the available time and uses less radio resource to deliver the message in time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Because of the practical limitations of the energy and processing capabilities, the deployment of many Wireless Sensor Networks (WSN) is facing two main challenges of increasing network lifetime and reducing End to End Delay (EED) which become critical when the nodes are mobile and use non‐rechargeable energy sources. One way to help to extend network lifetime is using fuzzy logic in a form of artificial intelligence. To this end we propose a new routing protocol for using mobile WSNs, which holds the nodes in an equal level of energy and decreases energy dissipation of the network. An optimum path is selected based on the cost of each node to increase network lifetime. In order to lessen EED, we also attempt to design a novel zoning‐scheme for the network area. In this scheme, zonation is dynamic and works based on the Data Link (DL) position. The simulation result shows a significant improvement in lifetime and EED by proposed protocol compared with existing protocols. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Underwater acoustic sensor networks (UASNs) are subjected to harsh characteristics of underwater acoustic channel such as severe path losses, noise, and high propagation delays. Among these constraints, propagation delay (more generally, end‐to‐end delay) is the most dominating limitation especially for time‐critical UASN applications. Although the minimization of end‐to‐end delay can be achieved by using the minimum hop routing, this solution cannot lead prolonged lifetimes since nodes consume excessive energy for transmission over long links. On the other hand, the maximization of network lifetime is possible by using energy efficient paths, which consist of relatively short links but high number of hops. However, this solution results in long end‐to‐end delays. Hence, there is a trade‐off between maximizing the network lifetime and minimizing the end‐to‐end delay in UASNs. In this work, we develop a novel multi‐objective–optimization (MOO) model that jointly maximizes the network lifetime while minimizing the end‐to‐end delay. We systematically analyze the effects of limiting the end‐to‐end delay on UASN lifetime. Our results reveal that the minimum end‐to‐end delay routing solution results in at most 72.93% reduction in maximum network lifetimes obtained without any restrictions on the end‐to‐end delay. Nevertheless, relaxing the minimum end‐to‐end delay constraint at least by 30.91% yields negligible reductions in maximum network lifetimes.  相似文献   

13.
In this article, performance of delay‐sensitive traffic in multi‐layered satellite Internet Protocol (IP) networks with on‐board processing (OBP) capability is investigated. With OBP, a satellite can process the received data, and according to the nature of application, it can decide on the transmission properties. First, we present a concise overview of relevant aspects of satellite networks to delay‐sensitive traffic and routing. Then, in order to improve the system performance for delay‐sensitive traffic, specifically Voice over Internet Protocol (VoIP), a novel adaptive routing mechanism in two‐layered satellite network considering the network's real‐time information is introduced and evaluated. Adaptive Routing Protocol for Quality of Service (ARPQ) utilizes OBP and avoids congestion by distributing traffic load between medium‐Earth orbit and low‐Earth orbit layers. We utilize a prioritized queueing policy to satisfy quality‐of‐service (QoS) requirements of delay‐sensitive applications while evading non‐real‐time traffic suffer low performance level. The simulation results verify that multi‐layered satellite networks with OBP capabilities and QoS mechanisms are essential for feasibility of packet‐based high‐quality delay‐sensitive services which are expected to be the vital components of next‐generation communications networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Because of the wide range of applications, many geographic routing protocols have been proposed in three‐dimensional (3D) wireless sensor networks. However, all the methods require assistance from a global positioning system (GPS), which is not always available. In this paper, we propose a method of constructing an axis‐based virtual coordinate assignment in 3D wireless sensor networks (ABVCap_3D) that requires no GPS assistance. We also propose a routing protocol based on ABVCap_3D, which guarantees packet delivery in 3D networks. Using simulations, we evaluate the performance of ABVCap_3D routing and other well‐known routing protocols, such as greedy‐random‐greedy routing, greedy‐hull‐greedy routing, and the routing based on axis‐based virtual coordinate assignment in 2D wireless sensor networks (ABVCap routing). Simulations show that ABVCap_3D routing requires significantly relative lower cost for guaranteeing packet delivery in comparison with ABVCap routing. Simulations also demonstrate that ABVCap_3D routing ensures a moderate ratio for routing path length to the shortest (ideal) path length. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Congestion in the network is the main cause for packet drop and increased end‐to‐end transmission delay of packet between source and destination nodes. Congestion occurs because of the simultaneous contention for network resources. It is very important to efficiently utilize the available resources so that a load can be distributed efficiently throughout the network. Otherwise, the resources of heavily loaded nodes may be depleted very soon, which ultimately affects network performances. In this paper, we have proposed a new routing protocol named queue‐based multiple path load balancing routing protocol. This protocol discovers several node‐disjoint paths from source to destination nodes. It also finds minimum queue length with respect to individual paths, sorts the node‐disjoint paths based on queue length, and distributes the packets through these paths based on the minimum queue length. Simulation results show that the proposed routing protocol distributes the load efficiently and achieves better network performances in terms of packet delivery ratio, end‐to‐end delay, and routing overhead. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Vehicular wireless networks offer wireless multi‐hop communications between vehicles and roadside units (RSUs). To reduce deployment cost, the distance between two RSUs could be long; that is, the communications between an RSU and a vehicle may be carried out through multi‐hops among intermediate vehicles. When a vehicle is driven from one RSU to another, the wireless multi‐hop delay becomes more serious as the number of multi‐hop relays increases. The wireless multi‐hop delay is critical for some emergency service. For instance, in a traffic accident, when a patient was sent to the hospital by ambulance, the life information of the patient must be transmitted to the hospital on time through the multi‐hop wireless network. If the ambulance is moved from one RSU to another, the wireless multi‐hop delay becomes more and more serious as the ambulance is closing to another RSU. In this paper, we propose an RSU re‐routing strategy that dynamically alters multi‐hop communications until the best RSU with the shortest path using location information is found. Moreover, we compare the proposed strategy with the existing strategy in terms of broadcasting costs, re‐routing delay, and wireless multi‐hop delay of data transmission. Performance results show that the proposed strategy can reduce the wireless multi‐hop delay significantly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
New multimedia applications provide guaranteed end‐to‐end quality of service (QoS) and have stringent constraints on delay, delay‐jitter, bandwidth, cost, etc. The main task of QoS routing is to find a route in the network, with sufficient resources to satisfy the constraints. Most multicast routing algorithms are not fast enough for large‐scale networks and where the source node uses global cost information to construct a multicast tree. We propose a fast and simple heuristic algorithm (EPDT) for delay‐constrained routing problem for multicast tree construction. This algorithm uses a greedy strategy based on shortest‐path and minimal spanning trees. It combines the minimum cost and the minimum radius objectives by combining respectively optimal Prim's and Dijkstra's algorithms. It biases routes through destinations. Besides, it uses cost information only from neighbouring nodes as it proceeds, which makes it more practical, from an implementation point of view. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In mobile distributed applications, such as traffic alert dissemination, dynamic route planning, file sharing, and so on, vehicular ad hoc network (VANET) has emerged as a feasible solution in recent years. However, the performance of the VANET depends on the routing protocol in accord with the delay and throughput requirements. Many of the routing protocols have been extensively studied in the literature. Although there are exemptions, they escalate research challenges in traffic aware routing (TAR) protocol of VANET. This paper introduces the fractional glowworm swarm optimization (FGWSO) for the TAR protocol of VANET in an urban scenario that can identify the optimal path for the vehicle with less traffic density and delay time. The proposed FGWSO searches the optimal routing path based on the fitness function formulated in this paper. Fractional glowworm swarm optimization is the combination of the GWSO and fractional theory. Moreover, exponential weighted moving average is utilized to predict the traffic density and the speed of the vehicle, which is utilized as the major constraints in the fitness function of the optimization algorithm to find the optimal traffic aware path. Simulation of FGWSO shows the significant improvement with a minimal end‐to‐end delay of 6.6395 seconds and distance of 17.3962 m, respectively, in comparison with the other existing routing approaches. The simulation also validates the optimality of the proposed TAR protocol.  相似文献   

19.
Routing in a low duty‐cycled wireless sensor network (WSN) has attracted much attention recently because of the challenge that low duty‐cycled sleep scheduling brings to the design of efficient distributed routing protocols for such networks. In a low duty‐cycled WSN, a big problem is how to design an efficient distributed routing protocol, which uses only local network state information while achieving low end‐to‐end (E2E) packet delivery delay and also high packet delivery efficiency. In this paper, we study low duty‐cycled WSNs wherein sensor nodes adopt pseudorandom sleep scheduling for energy saving. The objective of this paper is to design an efficient distributed routing protocol with low overhead. For this purpose, we design a simple but efficient hop‐by‐hop routing protocol, which integrates the ideas of multipath routing and gradient‐based routing for improved routing performance. We conduct extensive simulations, and the results demonstrate the high performance of the proposed protocol in terms of E2E packet delivery latency and packet delivery efficiency as compared with existing protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Energy is an extremely critical resource for battery‐powered wireless sensor networks (WSNs), thus making energy‐efficient protocol design a key challenging problem. However, uneven energy consumption is an inherent problem in WSNs caused by multi‐hop routing and many‐to‐one traffic pattern among sensors. In this paper, we therefore propose a new clustering method called fuzzy chessboard clustering (FFC), which is capable to overcome the bottleneck problem and addressing the uneven energy consumption problem in heterogeneous WSNs. We also propose an energy‐efficient routing method called artificial bee colony routing method (ABCRM) to find the optimal routing path for the heterogeneous WSNs. ABCRM seeks to investigate the problems of balancing energy consumption and maximization of network lifetime. To demonstrate the effectiveness of FCC‐ABCRM in terms of lessening end‐to‐end delay, balancing energy consumption, and maximization of heterogeneous network lifetime, we compare our method with three approaches namely, chessboard clustering approach, PEGASIS, and LEACH. Simulation results show that the network lifetime achieved by FCC‐ABCRM could be increased by nearly 25%, 45%, and 60% more than that obtained by chessboard clustering, PEGASIS, and LEACH, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号