首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wireless two‐way relay systems, it is difficult to achieve perfect timing synchronization among different nodes. In this paper, we investigate relaying protocol design and data detect schemes for asynchronous two‐way relaying systems to combat the intersymbol interference caused by asynchronous transmission. We consider fractional asynchronous delays and two schemes are proposed based on cyclic prefixed single carrier block transmission, namely, the receiver frequency domain equalization scheme and relay synchronization and network coding (RSNC) scheme. In the receiver frequency domain equalization scheme, the relay simply amplifies the received signal and forwards to the two source nodes, and fractionally spaced frequency domain equalizer (FS‐FDE) is employed at the receiver to recover the transmit data. In the RSNC scheme, the asynchronous signals are resynchronized with an FS‐FDE at the relay node. The output signals of FS‐FDE are then demodulated and network coded before forwarding to the two source nodes. In this RSNC scheme, data detection at the source nodes is the same as that in synchronous networks because the asynchronous signals have already been synchronized at the relay node. Simulation results show that the performance of both schemes is almost the same as in the perfect synchronized two‐way relaying systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an opportunistic relaying‐based incremental hybrid decode‐amplify‐forward (OR‐IHDAF) scheme that combines robust protocol switch with efficient relay selection is proposed in multi‐relay scenario to cope with the complex and variable channel environments. The proposed OR‐IHDAF scheme can improve the system performance significantly compared with the incremental hybrid decode‐amplify‐forward protocol with the increase of the possible candidate relay nodes and opportunistic relay selection. The analytical expression of the system outage probability of the OR‐IHDAF scheme is presented based on the probability density function and cumulative distribution function, which might be useful to avoid lengthy simulations. Numerical results show the correctness of our theoretical analysis and the performance improvement of the OR‐IHDAF scheme compared with the other current hybrid cooperative protocols and OR‐based cooperative schemes. The effects of the power allocation schemes on the outage probability are also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates secure transmission of an integrated satellite‐aerial‐terrestrial network (ISATN), where multiple eavesdroppers (Eves) attempt to overhear the satellite signals cooperatively. The ISATN adopts an unmanned aerial vehicle (UAV) equipped with multiple antennas as a relay with threshold‐based decode‐and‐forward (DF) protocol. By assuming that perfect instantaneous channel state information (CSI) of the satellite‐UAV link and the statistical CSI of the UAV‐user link are available, we first propose a beamforming (BF) scheme for maximizing the achievable secrecy rate (ASR) of the considered network. Then, we derive the analytical expressions of the secrecy outage probability (SOP) and ergodic secrecy rate (ESR) of the considered system with the BF strategy under an assumption that the satellite‐UAV link undergoes the shadowed‐Rician fading, while the UAV‐user link experiences the correlated Rayleigh fading. Finally, numerical results are given to demonstrate the superiority of the proposed BF scheme against zero forcing (ZF) and maximal ratio transmission (MRT) schemes and the validity of the secrecy performance analysis.  相似文献   

4.
A kind of amplify‐and‐forward (AF) and decode‐and‐forward (DF) mixed relay communication system is proposed in this letter. The source broadcasts the signal to all the relays. Relays that can decode the signal adopt DF scheme to retransmit the signal, while the rest adopt AF scheme for retransmission. The destination employs maximum ratio combining technique to maximize the received signal‐to‐noise ratio. Another situation concerned in this letter is that when the relay cannot decode the source signal, it may retransmit the interference signal with AF scheme. Closed‐form expressions of outage probability are derived. Simulation results show that the analytical curves agree with the simulated ones very well, and the AF‐DF mixed relay system can improve the availability of the relays. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Various sectors are likely to carry a set of emerging applications while targeting a reliable communication with low latency transmission. To address this issue, upon a spectrally‐efficient transmission, this paper investigates the performance of a 1 full‐dulpex relay system and considers for that purpose, 2 basic relaying schemes, namely, the symbol‐by‐symbol transmission, i.e., amplify‐and‐forward and the block‐by‐block transmission, i.e., selective decode‐and‐forward. The conducted analysis presents an exhaustive comparison, covering both schemes, over 2 different transmission modes, i.e., the noncombining mode where the best link, direct, or relay link is decoded and the signals combining mode, where direct and relay links are combined at the receiver side. While targeting latency purpose as a necessity, simulations show a refined results of performed comparisons and reveal that amplify‐and‐forward relaying scheme is more adapted to combining mode, whereas the selective decode‐and‐forward relaying scheme is more suitable for noncombining mode.  相似文献   

6.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study scheduling schemes for two‐user two‐way wireless relaying systems. Two transmission modes are considered: point‐to‐point direct transmission and two‐way amplify‐and‐forward relaying. An optimal scheduling scheme that opportunistically selects the best transmission mode for each user is proposed to minimize the sum bit error rate (BER). The performance lower bound of the optimal scheduling scheme is analyzed, and closed‐form expression of the lower‐bound BER is derived. However, for optimal scheduling, the scheduler requires the knowledge of channel state information (CSI) of all links. To reduce the feedback information of CSI, we also propose a suboptimal scheduling scheme that selects the transmission mode using only the CSI of two direct links. Simulation results show that there are 4 dB to 8 dB gains for the proposed optimal and suboptimal schemes over the fixed direct transmission and fixed two‐way relayed transmission scheme. The performance gap between the optimal and suboptimal scheduling schemes is small, which implies a good trade‐off between implementation complexity and system performance.  相似文献   

8.
We explore the SNR-optimal relay functionality in a mernoryless relay network, i.e. a network where, during each channel use, the signal transmitted by a relay depends only on the last received symbol at that relay. We develop a generalized notion of SNR for the class of memoryless relay functions. The solution to the generalized SNR optimization problem leads to the novel concept of minimum mean squared uncorrelated error (MMSUE) estimation. For the elemental case of a single relay, we show that MMSUE estimate is a scaled version of the MMSE estimate. This scheme, that we call estimate and forward (EF), performs better than the best of amplify and forward (AF) and demodulate and forward (DF) in both parallel and serial relay networks. We determine that AF is near-optimal at low transmit power in a parallel network, while DF is near-optimal at high transmit power in a serial network. For hybrid networks that contain both serial and parallel elements, the advantage of EF over the best of AF and DF is found to be significant. Error probabilities are provided to substantiate the performance gain obtained through SNR optimality. We also show that, for Gaussian inputs, AF, DF and EF are identical  相似文献   

9.
Cooperative communication based on relaying nodes has been considered as a promising technique to increase the physical layer security (PLS) performance in wireless communications. In this paper, an optimal power allocation (OPA) scheme based on Nelder‐Mead (NM) algorithm is proposed for improving the secrecy rate of amplify‐and‐forward (AF) cooperative relay networks employing cooperative jamming (CJ) scheme. The proposed hybrid jamming scheme allows the source and selected relay to transmit the jamming signal along with the information to confound the eavesdropper. The path selection probability of ant colony optimization (ACO) algorithm is used for selecting the relay for transmission. The performance based on secrecy rate is evaluated for “n” trusted relays distributed dispersedly between the source and destination. Gradient‐based optimization and three‐dimensional exhaustive search methods are used as benchmark schemes for comparison of the proposed power optimization algorithm. The secrecy performance is also compared with conventional AF scheme and CJ scheme without power optimization (EPA). The impact of single and multiple relays on secrecy performance is also evaluated. Numerical results reveal that, compared with the gradient method and exhaustive search algorithm, the proposed power allocation strategy achieves optimal performance. Also, the derived OPA results show a significantly higher secrecy rate than the EPA strategy for both CJ and AF schemes.  相似文献   

10.
In this paper, the exact analysis of a multihop multibranch (MHMB) relaying network is investigated wherein each relay can operate in amplify‐and‐forward (AF) or decode‐and‐forward (DF) modes depending upon the decoding result of its received signal. If a relay decodes the received signal correctly, it works in DF mode; otherwise, the relay operates in AF mode. Therefore, we name such relaying network as hybrid amplify‐and‐forward and decode‐and‐forward (hybrid AF/DF) relaying network. We first investigate the signal transmission from source to destination node via n number of relays in a hybrid AF/DF MHMB mode. Then, we obtained the statistical features and analyze the end‐to‐end signal‐to‐noise ratio (SNR). Finally, a comprehensive performance analysis is conducted by using maximal ratio combining (MRC) scheme at the destination node. For comparison, we also obtained the results using selection combining (SC) scheme at the destination node. To the best of our knowledge, very few works in the literature have considered a general system model of MHMB relaying network wherein each relay can operate in AF or DF modes, that is, a hybrid AF/DF relaying network. Accordingly, the analysis of our system model is not only novel and exact, but also is comprehensive and can be employed in the future works.  相似文献   

11.
This letter investigates the joint effects of imperfect channel state information and co‐channel interferences on a two‐hop fixed gain amplify‐and‐forward (AF) relay network with beamforming. Specifically, the analytical expressions of the outage probability and the average symbol error rate for the AF relaying are derived. Moreover, the asymptotic analysis at high signal‐to‐noise ratio is also presented to reveal the diversity order and array gain of the considered AF relay system. Finally, computer simulations are given to confirm the validity of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper considered the single relay system and proposed a novel repetition coding decode‐and‐forward (DF) cooperative transmission scheme on the basis of superposition coding and partial relaying. In the proposed scheme, the link disparity due to the geometry of the relay network is emphasized, and only a fraction of the information is transmitted in relay mode with the rest being transmitted directly, which benefits from the utility of superposition coding (SC) in broadcast situation. The proposed scheme is analyzed in two cases, one assumes full channel state information at the source (full CSIS), the other with only mean gain of each link known by the source (partial CSIS). For both cases, the optimal design of system parameters is considered. We investigate the achievable rate and expected rate performance for these two cases, respectively. The proposed schemed is well compared with conventional repetition coding DF, parallel coding DF, as well as another promising superposition coding relaying. It is concluded that, by designing protocols that orients to certain network geometry, better trade‐off between performance and complexity can be obtained. The analysis reveals that the gap between conventional repetition and parallel coding is largely mitigated by the proposed scheme, quite for the scenario that the relay locates relatively but not extremely closer to the source, at moderate SNR regime for both partial and full CSIS cases. The proposed scheme becomes more beneficial in severe path loss attenuation scenario. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Recently, efficient partial relay selection (e‐PRS) was proposed as an enhanced version of PRS. In comparing e‐PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e‐PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e‐PRS in decode‐and‐forward (DF) relaying systems over non‐identical Nakagami‐m fading channels, where the fading parameter m is an integer. In particular, we provide closed‐form expressions of the exact outage probability and asymptotic outage probability for e‐PRS in DF relaying systems. Numerical results show that e‐PRS achieves similar outage performance to that of BRS for a low or medium signal‐to‐noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.  相似文献   

14.
To effectively reduce the inter‐relay interference (IRI) in two‐path successive relaying, two beamforming schemes are proposed in this paper, utilizing multiple‐antenna relay nodes. Specifically, the two cooperation nodes perform receive combining of the source signal and transmit beamforming of the relayed signal alternately in the successive relaying process. As a result, the IRI between them can be effectively suppressed, thanks to the additional degree of freedom provided by the multiple‐input multiple‐output inter‐relay channel. In the first beamforming scheme, the source‐to‐destination signal‐to‐interference‐plus‐noise ratios (SINR) of separate paths are maximized with approximation, leading to a minimum variance distortionless response beamformer under the high SINR condition. To further improve the system performance, noting that the received SINRs of the two paths have impact on each other due to the mutual coupling of the beamformers, the sum of mean squared errors from these two transmission paths is minimized in the second scheme. Based on this performance criterion, a suboptimal beamformer design is developed numerically through cyclic minimization of the sum of mean squared error cost function. Simulation results demonstrate the superiority of both proposed beamforming schemes in terms of symbol error rate and the achievable system rate, in particular, at high IRI levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Opportunistic relaying in cooperative communication depends on careful relay selection. However, the traditional centralized method used for opportunistic amplify‐and‐forward protocols requires precise measurements of channel state information at the destination. In this paper, we adopt the max–min criterion as a relay selection framework for opportunistic amplify‐and‐forward cooperative communications, which was exhaustively used for the decode‐and‐forward protocol, and offer an accurate performance analysis based on exact statistics of the local signal‐to‐noise ratios of the best relay. Furthermore, we evaluate the asymptotical performance and deduce the diversity order of our proposed scheme. Finally, we validate our analysis by showing that performance simulation results coincide with our analytical results over Rayleigh fading channels, and we compare the max–min relay selection with their centralized channel state information‐based and partial relay selection counterparts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Recent advances in the field of wireless communication have proven the importance of diversity in combating channel fading and improving the bit error rates (BERs). In this report, a dual‐hop decode‐amplify‐forward (DAF) transmission system over Nakagami‐m fading channel is studied. The DAF relay system is a hybrid of decode‐and‐forward and amplify‐and‐forward relay systems that shows the benefits of both decode‐and‐forward and amplify‐and‐forward relay systems and is also called hybrid relay system or hybrid DAF relay system. Signal‐to‐noise ratios and BERs for various system models with varying number of transmit and receive antennas have been discussed. The diversity is achieved in two ways: firstly, by the use of relay and secondly, by the use of multiple antennas at both the transmitter and the receiver. Dual‐hop relaying gives better trunking efficiency and with single antenna at the relay site acquisition and antenna structures are much less expensive. The variations in the performance levels when the relay is moved to different locations within the line of sight of the transmitter and the receiver have also been analyzed. BERs with respect to variations in the fading parameter ‘m’ have also been presented and discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Two‐path or successive relaying, which aims to establish two relay links transmitting different information symbols in adjacent time slots, has recently emerged as an attractive wireless communication protocol to improve the spectral efficiency in half‐duplex cooperative systems. In this paper, we investigate power allocation and relay selection techniques for amplify‐and‐forward two‐path successive relaying networks. Our approach is based on the maximization of the received SNR subject to a total power budget consumed by the source and the relay assisting this specific transmission. Two scenarios including with and without direct link are considered here. We show that the main problem has a closed‐form solution and only requires a few amounts of feedback bits to be broadcasted. Numerical results reveal that the proposed approaches are more insensitive to the inter‐relay interference and robust to channel estimation errors; meanwhile, they perform better than the existing schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The two‐way relay (TWR) protocols are efficient in providing appreciable throughput gains in wireless networks through the use of network coding to combine packets from multiple channels. The key determinant factor in driving the throughput improvement is the degree of simultaneity achieved in the relay scheme. In this paper, we propose a new TWR protocol named interference cancellation TWR (IC‐TWR), which combines network coding, spatial diversity, and IC techniques to arrive at high degree of simultaneity and in the meanwhile to relax the requirement on channel state information as compared with TWR schemes based on amplify‐and‐forward. Numerical analysis shows that the proposed IC‐TWR is uniformly advantageous over the traditional decode‐and‐forward scheme in terms of system throughput and end‐to‐end delay. The proposed scheme may be useful for system designers of high‐speed multimedia applications in wireless mobile networks, wireless cellular networks, wireless sensor networks, and so on. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
For amplify‐and‐forward relay networks, we propose an iterative scheme to estimate channel and detect information symbols for the multi‐antenna destination in spatially correlated noise. The equivalent channel coefficients and noise covariance are estimated by expectation–maximization algorithm. In addition, we discuss the initialization of iteration and analyze the modified Cramér–Rao bound to show the performance of the proposed iterative estimation. Moreover, on the basis of the structure of the proposed iterative estimator, a joint channel estimation and detection receiver is also provided. Finally, simulation results show that the proposed channel estimator and receiver can achieve the optimal performances in amplify‐and‐forward relay networks with unknown noise correlation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Modified transmit antenna selection (TAS)/orthogonal space‐time block coding (OSTBC) (M‐TAS/OSTBC) schemes have been shown to achieve superior error performance together with a reduced‐rate feedback channel in the presence of feedback errors (FEs) when compared with the conventional TAS/OSTBC (C‐TAS/OSTBC) schemes. This paper focuses on the bringing of fixed‐gain amplify‐and‐forward (FGAF) relaying schemes that employ M‐TAS/OSTBC schemes at both hops that provides reduced feedback‐rate and robust error performance in the presence of erroneous‐feedback channels. The exact expressions of the outage and error probabilities for both dual‐hop FGAF relaying schemes in Nakagami‐m fading channels have been derived and validated via Monte Carlo simulations. Additionally, with the help of high signal‐to‐noise ratio (SNR) (i.e., asymptotic) approaches and some analytical approximations, the asymptotic diversity order analysis has been carried out. Besides, by providing a simulation‐based examination on the inclusion of power allocation within the modified scheme, the additional advantages on the performance have been exhibited. The extensive investigation and comparisons to the conventional schemes have shown that M‐TAS/OSTBC schemes employed at each transmission link provide full diversity order and considerable error performance as the C‐TAS/OSTBC scheme in ideal feedback cases and also achieve more robust error performance in the presence of FEs. Thus, by using M‐TAS/OSTBC schemes, the overall performances of the dual‐hop FGAF relaying schemes have been enhanced, which would result in reductions on the average SNR requirements to achieve a specified error rate constraint. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号