首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The phases CaMgAg, YbMgAg, CaMgPd, and YbMgPd were synthesized by melting the constituent metals in sealed tantalum crucibles and by annealing at 1023 K. All the samples were homogeneous, and the crystallographic analysis, which was performed by powder and singlecrystal techniques, shows that the four compounds are isotypic and belong to the orthorhombic TiNiSi type. Magnetic measurements showed that YbMgAg and YbMgPd behave like Pauli paramagnets, according to the divalency of Yb in both phases. Within the Ca-Mg-Ag system, the existence range of the MgZn2-type phases in the Mg-rich CaMg2−x Ag x pseudobinary system goes from CaMg2 to CaMg1.6Ag0.4. Another stability region of the MgZn2 structure occurs around the Ag-rich composition (Ca0.94Mg0.06)(Ag1.60Mg0.40), where magnesium replaces both the Ca and Ag atoms.  相似文献   

2.
CaLi2−xMgx (0 ≤ x ≤ 2) which has the C14-type Laves phase structure has been successfully synthesized and hydrogenated. The C14-type Laves phase structure was kept after hydrogenation of CaLi2−xMgx (x = 0.2, 0.5, 1). After hydrogenation of CaLi2 and CaMg2, the Laves phase disappeared. The CaH2 and LiH phases were formed from CaLi2 and the CaH2 and Mg phases from CaMg2, respectively. CaLi2−xMgx (0 < x < 2) ternary alloys formed stable hydride phases with the C14-type Laves phase structure in contrast to CaLi2 and CaMg2 binary alloys.  相似文献   

3.
Pure Mg was diffusion bonded to pure Zn at 315 °C for 168 h to produce equilibrium intermetallic compounds of the Mg–Zn system. All equilibrium phases at 315 °C, Mg21Zn25, Mg4Zn7, MgZn2, Mg2Zn11, were observed to develop. Concentration profiles by electron probe microanalysis, electron diffraction patterns by transmission electron microscopy, and load–displacement curves by nano-indentation were examined to characterize the phase constituents, crystal structure, diffusion kinetics, and mechanical properties. Mg21Zn25 with trigonal, Mg4Zn7 with monoclinic, and Mg2Zn11 with cubic structures were found and their lattice parameters were reported herein. Mg4Zn7 and Mg2Zn11 were observed to have a range of solubility of approximately 2.4 at% and 1.6 at%, respectively. Interdiffusion in MgZn2 occurred most rapidly, was an order of magnitude slower in Mg4Zn7 and Mg2Zn11, and was the slowest in Mg21Zn25. Composition-dependence of interdiffusion within each intermetallic phase was negligible. The intermetallic phases exhibited insignificant creep, but evidence of discontinuous yielding was observed. The average hardness and reduced moduli were similar for Mg21Zn25, Mg4Zn7, and MgZn2 phases, ∼5 GPa and ∼90 GPa, respectively. However, the Mg2Zn11 phase had lower hardness of 3.76 GPa and higher modulus of 108.9 GPa. The mechanical properties in the characterized intermetallic phases, exclusive of Mg21Zn25, were strongly concentration-dependent.  相似文献   

4.
The pyrochlore-type phases with the compositions of SmDy1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.20) have been prepared by pressureless-sintering method for the first time as possible solid electrolytes. The structure and electrical conductivity of SmDy1−xMgxZr2O7−x/2 ceramics have been studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy measurements. SmDy1−xMgxZr2O7−x/2 (x = 0, 0.05, 0.10) ceramics exhibit a single phase of pyrochlore-type structure, and SmDy1−xMgxZr2O7−x/2 (x = 0.15, 0.20) ceramics consist of pyrochlore phase and a small amount of the second phase magnesia. The total conductivity of SmDy1−xMgxZr2O7−x/2 ceramics obeys the Arrhenius relation, and the total conductivity of each composition increases with increasing temperature from 673 to 1173 K. SmDy1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest total conductivity value is about 8 × 10−3 S cm−1 at 1173 K for SmDy1−xMgxZr2O7−x/2 ceramics.  相似文献   

5.
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2Mg8Si6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.  相似文献   

6.
L. Hu  B.Y. Liu  F. Ye  B.C. Wei  G.L. Chen 《Intermetallics》2011,19(5):662-665
We fabricated ternary Ca–Mg–Zn and quaternary Ca–Mg–Zn–Ag bulk metallic glasses with diameter of 7 mm by unidirectional quenching into water-cooled Ga–In–Sn liquid alloys. It was suggested that the electromagnetic stirring caused by induction eddy current facilitated the glass formation. Glass forming ability of Ca62.5Mg17.5Zn20?xAgx (x = 0, 1, 3, 5, 7, 9) system was dependent on Ag content. It was found that in the system the in-situ formed crystalline phases enhanced the second-stage crystallization, whereas there seemed no contribution to the third-stage crystallization.  相似文献   

7.
The whole isothermal section of the La–Ag–Mg phase diagram at 400 °C was constructed by means of phase identification and analysis on about eighty annealed ternary alloys. The tendency of Ag and Mg to reciprocally substitute in binary Ag–Mg phases reflects in the formation of several La–Ag–Mg ternary phases including solid solutions based on boundary binary phases, which show wide homogeneity regions extending at a constant La-content.Among the solid solutions, La(AgxMg1-x) (0 ≤ x ≤ 1, cP2-CsCl), La(AgxMg1-x)3 (0 ≤ x ≤ 0.67, cF16-BiF3) and La2(AgxMg1-x)17 (0 ≤ x ≤ 0.30, hP42–3.64-CeMg10.3) are the most extended. The crystal structure of La2(AgxMg1-x)17 was determined from X-ray diffraction data refinement on two single crystals corresponding to x = 0 and x ≈ 0.2: a hexagonal disordered structure based on the CeMg10.3 type structure is proposed for this solid solution (for La2Mg17: P63/mmc, hP42–3.64, a = 1.0387(1), c = 1.0263(2) nm, wR2 = 0.0727, 408 F2 values, 29 variables).Among the ternary compounds, the crystal structures of τ1-LaAg1+xMg1-x (0 ≤ x ≤ 0.15, hP9-ZrNiAl), τ2-La4Ag10+xMg3-x (?0.15 ≤ x ≤ 0.3, oS68-Ca4Au10In3) and τ5-La4Ag10.3+xMg12-x (?0.4 ≤ x ≤ 0.70, oS116–10.33-La4Ag10.3Mg12) were confirmed and their homogeneity ranges established. The crystal structures of τ4-LaAg4+xMg2-x (?0.15 ≤ x ≤ 0.88, tI14-YbAl4Mo2), τ4’-LaAg5+xMg1-x (?0.1 ≤ x ≤ 0.05, tP14-LaAg5Mg) and τ6-La3Ag4+xMg12-x (?1.6 ≤ x ≤ 1.0, hP38-Gd3Ru4Al12) were solved and refined by X-ray powder diffraction data analysis. The phases τ4 and τ4’ crystallize in two strictly correlated tetragonal structures, body centered and primitive respectively; these two structures were interpreted as structural modifications of the same phase. Two more new ternary phases, τ3-LaAg2+xMg2-x (0 ≤ x ≤ 0.45, oS20-LaAg2Mg2) and τ7-La(AgxMg1-x)12 (0.11 ≤ x ≤ 0.21, tI208-La(AgxMg1-x)12), were also detected in this system.  相似文献   

8.
The microstructure and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics system with ZnO additions (0.5 wt.%) investigated by the conventional solid-state route have been studied. Doping with ZnO (0.5 wt.%) can effectively promote the densification and the dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics. 0.6La(Mg1/2Ti1/2)O3–0.4Ca0.6La0.8/3TiO3 ceramics with 0.5 wt.% ZnO addition possess a dielectric constant (r) of 43.6, a Q × f value of 48,000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −1 ppm/°C sintering at 1475 °C. As the content of La(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 62,900 (GHz) for x = 0.8 is achieved at the sintering temperature 1475 °C. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

9.
Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn–Mg–Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn–Mg–Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b?=?0.5252 nm, c?=?0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a?=?0.8575 nm, b?=?0.8874 nm, c?=?0.8771 nm) in the equilibrium state.  相似文献   

10.
采用基于密度泛函理论Castep和Dmol程序软件包, 计算了ZA62镁合金中AB2型金属间化合物 MgZn2, Mg2Sn和MgCu2的结构稳定性、弹性性能与电子结构. 合金形成热和结合能的计算结果显示:  Mg2Sn具有最强的合金化形成能力, 而MgCu2结构最稳定; 体模量(B)、弹性各向异性系数(A)、Young's模量(E)、剪切模量(G)和Poisson比(ν)的计算结果表明: MgZn2和MgCu2为延性相, 而Mg2Sn为脆性相, MgZn2的塑性最好; 采用弹性常数、体模量和结合能的经验公式计算金属间化合物的熔点, 实验值均在采用弹性常数(±300 K)和体模量(±500 K)计算熔点预测的范围内, 采用弹性常数比采用体模量和结合能预测熔点的平均相对误差小, 其中采用弹性常数计算Mg2Sn的熔点与对应的实验值十分接近, 相对误差仅为0.31%. 不同温度下热力学性质的计算结果表明, 在298-573 K温度范围内, MgCu2的Gibbs自由能始终最小, 其结构热稳定性最好, 结构稳定性的强弱顺序并不随温度的升高而消失; 而对MgZn2和Mg2Sn, 以475 K为临界, 结构稳定性的强弱顺序随温度的升高发生了变化; 态密度和Mulliken电子占据数的计算结果表明: MgCu2 结构最稳定的原因主要在于体系在Fermi能级以下区域成键电子存在强烈的离子键作用.  相似文献   

11.
A comparative study on heterophase states in perovskite-type solid solutions of (1 − x)Pb(Mg1/3Nb2/3)TiO3xPbTiO3 is carried out for compositions near the morphotropic phase boundary. The conditions for mechanical stress relief at elastic matching of phases are analysed at x = const in a wide temperature range. The heterophase states concerned with the presence of the intermediate monoclinic phase are interpreted using the domain state–interface diagrams calculated for x = 0.28, 0.32 and 0.34. It is shown that optimum volume fraction parameters of the domains in the monoclinic phase of the B type are varied in relatively wide ranges and promote complete stress relief with cubic–monoclinic phase coexistence. Two scenarios of stress relief at x = 0.32 are considered in connection with different heterophase states (either tetragonal–monoclinic of the B type or tetragonal–monoclinic of the C type) in a wide temperature range. Possibilities of elastic matching of two polydomain phases (tetragonal–monoclinic of the B type) with almost equal relative widths of the domains in these phases are shown for x = 0.34. The active role of domains of the monoclinic phases in stress relief and forming the planar unstrained interfaces is discussed.  相似文献   

12.
Mg2Si:Gax and Mg2Si0.6Ge0.4:Gax (x = 0.4% and 0.8%) solid solutions have been synthesized by direct melting in tantalum crucibles and hot pressing. The effect of Ga doping on the thermoelectric properties has also been investigated by measurements of thermopower, electrical resistivity, Hall coefficient and thermal conductivity in temperature range from 300 to 850 K. All samples exhibit a p-type conductivity evidenced by positive sign of both thermopower and Hall coefficient in the investigated temperatures. The maximum value of the dimensionless figure of merit ZT was reached for the Mg2Si0.6Ge0.4:Ga(0.8%) compound at 625 K (ZT ∼ 0.36). The p-type character of thermoelectric behaviours of Ga-doped Mg2Si and Mg2Si0.6Ge0.4 compounds well corroborates with the results of electronic structure calculations performed by the Korringa-Kohn-Rostoker method and the coherent potential approximation (KKR-CPA), since Ga diluted in Mg2Si and Mg2Si0.6Ge0.4 (on Si/Ge site) behaves as hole donor due to the Fermi level shifted to the valence band edge. The onset of large peak of DOS from Ga impurity at the valence band edge, well corroborates with high Seebeck coefficient measured in Ga-doped samples.  相似文献   

13.
A literature survey and recent results on phase relationships in the quasi-ternary systems RE2O3-Al2O3-SiO2 are given. The investigated systems exhibit extended ternary solid solutions, RE9.33+2x(Si1_xAlxO4)6O2 (withx up to ~0.33) and/or RE4Al2(1_X)Si2xO9+x (withx up to ~0.3), which are based on the quasi-binary phases RE9.33(SiO4)6O2 and RE4A12O9, respectively. The former is encountered only in systems with laige RE3+ ions (e.g., La3+), whereas the latter is found in systems with small RE3+ ions (e.g., Yb3+); in systems with medium-sized KE3+ ions (e.g., Gd3+) both types exist Quasi-ternary compounds are known only in the La, Ce, and Sc systems. Severe discrepancies in reported ternary eutectic temperatures led to a need for their accurate redeteimination.  相似文献   

14.
In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel polarization curves are plotted by an electrochemical workstation. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. Furthermore, the substitution of Co for Ni, instead of changing major phase Mg2Ni, leads to forming secondary phases MgCo2 and Mg. Both the melt spinning treatment and Co substitution significantly improve the hydrogen absorption and desorption kinetics. The high rate discharge ability, the hydrogen diffusion coefficient and the limiting current density of the alloys significantly increase with raising both the spinning rate and the amount of Co substitution.  相似文献   

15.
Thermal analysis was used to investigate the microstructural evolution of Mg-7Zn-xCu-0.6Zr alloys during solidification. The effect of Cu content (0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7Zn-xCu-0.6Zr alloys was investigated with a constrained rod casting (CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7Zn-xCu-0.6Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and MgZn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, MgZnCu and MgZn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of MgZn2 and MgZnCu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility (HTS) of Mg-7Zn-xCu-0.6Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.  相似文献   

16.
Wang  Zhi  Yao  Sheng  Feng  Yu  Liu  Zheng  Li  Yi-zhou  Wang  Feng  Mao  Ping-li 《中国铸造》2018,15(2):124-131
Hot tearing is known as one of the most serious solidification defects commonly encountered during solidification. It is very important to study the solidification path of alloys. In the work, thermal analysis with cooling curve was used for the investigation of microstructure evolution with different Zn contents during solidification process of MgZn_xY_4Zr_(0.5) alloys. Thermal analysis results of MgY_4Zr_(0.5) alloys revealed one distinct phase precipitation: α-Mg. Three different phase peaks were detected in the Zn-containing alloys: α-Mg, Z-phase(Mg_(12)YZn) and W-phase(Mg_3 Y_2Zn_3). In addition, for the present MgZn_xY_4Zr_(0.5) alloys, the freezing ranges of these alloys from large to small were: MgZn_(1.5)Y_4Zr_(0.5)MgZn)(3.0) Y)4Zr_(0.5)MgZn0.5 Y4 Zr0.5MgY_4Zr_(0.5). The effect of different contents of Zn(0, 0.5, 1.5, 3.0 wt.%) on hot tearing behavior of MgY_4Zr_(0.5) alloy was investigated using a constrained rod casting(CRC) apparatus equipped with a load cell and data acquisition system. The experimental results show that the addition of Zn element significantly increases hot tearing susceptibility(HTS) of the MgY_4Zr_(0.5) alloy due to its extended freezing range. Some free dendrite-like bumps and ruptured liquid films on the fracture surfaces were observed in all the fracture surfaces. These phenomena proved the fact that the hot tearing formation was caused by interdendritic separation due to lack of feeding at the end of solidification.  相似文献   

17.
Mg0.4Al2.4O4 single crystals with good optical quality were successfully grown by the Czochralski method. The transmission spectrum indicated that the absorption edge of the crystal was at 220 nm, while no apparent absorption peaks were found. The X-ray diffraction and DSC curve analysis showed that Mg0.4Al2.4O4 crystal was stable at room temperature. While after annealing in the air and hydrogen atmosphere at about 1200 °C, Mg0.4Al2.4O4 decomposed into Al2O3 and (MgO)0.4(Al2O3)x (0.4 < x < 1.2). The reaction mainly occurred on the crystal surface, barely inside.  相似文献   

18.
Thermoelectric materials Mg2−xCaxSi (x = 0, 0.01, 0.03, 0.05, 0.07, 0.1) compounds have been prepared by vacuum melting followed by hot-pressing. Effects of the substitution of Ca for Mg on phase structures and the thermoelectric properties of the hot-pressed compounds were investigated. It was found that the alloying of Ca in Mg2Si based compounds increases the electrical conductivity and decreases the Seebeck coefficient of the compounds, due to the electronegativity difference between Ca and Mg. The dimensionless figures of merit of Mg2Si and Mg1.99Ca0.01Si reach, respectively, 0.41 and 0.34 at 660 K.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号