首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhenium (Re) is a refractory metal which exhibits an extraordinary combination of properties. Thus, nanowires and other nanostructures of Re-alloys may possess unique properties resulting from both Re chemistry and the nanometer scale, and become attractive for a variety of applications, such as in catalysis, photovoltaic cells, and microelectronics. Rhenium–tin coatings, consisting of nanowires with a core/shell structure, were electrodeposited on copper substrates under galvanostatic or potentiostatic conditions. The effects of bath composition and operating conditions were investigated, and the chemistry and structure of the coatings were studied by a variety of analytical tools. A Re-content as high as 77 at.% or a Faradaic efficiency as high as 46% were attained. Ranges of Sn-to-Re in the plating bath, applied current density and applied potential, within which the nanowires could be formed, were determined. A mechanism was suggested, according to which Sn nanowires were first grown on top of Sn micro-particles, and then the Sn nanowires reduced the perrhenate chemically, thus forming a core made of crystalline Sn-rich phase, and a shell made of amorphous Re-rich phase. The absence of mutual solubility of Re and Sn may be the driving force for this phase separation.  相似文献   

2.
Highly ordered ZnO nanowire arrays were fabricated by paired cell method into nanoporous anodic alumina oxide (AAO) template. ZnO nanowires were uniformly assembled into the ordered channels of the AAO template. TEM and selected-area electron diffraction patterns indicated that the ZnO nanowires grow as a single crystal. The factors influencing the final filled density of ZnO nanowires, including the solution concentration and the diffusing temperature are discussed briefly. In addition, the possible mechanism is also proposed to account for the growth of the ZnO nanowires in the AAO template. This result has established that this paired cell method makes it possible to grow single-crystalline ZnO nanowires in the AAO template under appropriate conditions.  相似文献   

3.
In this paper the fabrication and the characterization of heterojunction solar cells based on electrodeposited ZnO and Cu2O is described. The effect of the electrodeposition conditions (pH and temperature) on the cell performance has been investigated. The cells made with a Cu2O layer deposited at high pH (12) and moderate temperature (50 °C) have shown conversion efficiency as high as 0.41%.  相似文献   

4.
By using a potentiostatic electrodeposition method, well-aligned ZnO nanorod arrays (ZNAs) were synthesized under different conditions. The effects of preparing conditions on the electrodeposition of ZNAs were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and absorbance spectroscopy. It is indicated that the electrodeposition parameters, such as electrodeposition potential, electrolyte pH, concentration of precursors, temperature of solution and electrodeposition time, have significant influence on the morphology, diameter, density and growth rate of ZNAs. The ZNAs, with well-defined crystallization, can be only obtained when the applied potential is controlled from −0.4 to −1.0 V. The growth temperature has great impact on the morphology of ZnO nanostructure but it is weakly related to the band gap (Eg) of ZNAs. The rod diameters can be monitored to some extent only by changing the concentration of the precursors. The electrolyte pH value has relative influence on the diameter of ZNAs. With the growth time increasing, ZNAs with high aspect ratio can be gained.  相似文献   

5.
Branched hierarchical ZnO nanowire arrays are synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step electrochemical deposition process, which involves the electrodeposition of ZnO nanowire arrays on conductive glass substrate, followed by the electrochemical growth of ZnO nanorod branches on the backbones of the primary ZnO nanowires. The formation mechanism of the branched hierarchical nanostructure is discussed. It is demonstrated that coating the primary nanowire arrays with ZnO nanoparticles seed layer plays a key role in synthesising the branched hierarchical ZnO nanostructure. By adjusting the concentration of Zn(CH3COO)2 colloid in coating process and the reaction time of the second-step deposition, the density and the length of the secondary nanorod branches in the hierarchical nanostructures can be both varied. Moreover, the photoelectrochemical properties of the dye-sensitized solar cell (DSSC) based on branched hierarchical ZnO nanowire arrays are investigated. Due to the enlargement of the internal surface area within the branched nanostructure photoelectrode, the DSSC consisting of branched hierarchical ZnO nanowire arrays yields a power conversion efficiency of 0.88%, which is almost twice higher than that of the DSSC fabricated using bare ZnO nanowire arrays.  相似文献   

6.
ABSTRACT: We report the growth and characterization of ZnO/ZnTe core/shell nanowire arrays on indium tin oxide. Coating of the ZnTe layer on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowire arrays were then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The enhanced photocurrent and faster response observed in ZnO/ZnTe, together with the quenching of the UV emission in the PL spectra, indicate that carrier separation in this structure plays an important role in determining their optical response. The results also indicate that core/shell structures can be made into useful photovoltaic devices.  相似文献   

7.
This paper reports the fabrication and interface modification of hybrid inverted solar cells based on ZnO nanorod arrays and poly (3-hexylthiophene). CdSe quantum dots (QDs) are grafted to the ZnO nanorod array successfully by bifunctional molecule mercaptopropionic acid to enhance the device performance. The power conversion efficiency of the device is increased by 109% from 0.11% to 0.23% under simulated 1 sun AM 1.5 solar illumination at 100 mW/cm2 after the modification. The grafting of CdSe QDs effectively enhanced the excition generation and dissociation on the organic/inorganic interface. This work may provide a general method for increasing the efficiency of organic–inorganic hybrid solar cells by interface modification.  相似文献   

8.
Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l−1). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications and for quantum well preparation.  相似文献   

9.
Cuprous oxide(Cu_2 O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃. The effects of sodium thiosulfate on the electrochemical deposition of Cu20 films were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at-0.58 V vs. SCE and characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and optical, photoelectrochemical and electrical measurements. X-ray diffraction results indicated that the synthesized Cu20 films had a pure cubic phase with a marked preferential orientation peak along(200) plane and with lattice constants a = b = c = 0.425 nm. FTIR results confirmed the presence of Cu_2 O films at peak 634 cm~(-1) SEM images of Cu_2 O films showed a better compactness and spherical-shaped composition. Optical properties of Cu20 films reveal a high optical transmission(80%) and high absorption coefficient(α 10~4 cm~(-1)) in visiblelight region. The optical energy band gap was found to be 2.103 eV. Photoelectrochemical measurements indicated that Cu20 films had n-type semiconductor conduction, which confirmed by Hall Effect measurements.Electrical properties of Cu20 films showed a low electrical resistivity of 61.30 Ω·cm~(-1), carrier concentration of-4.94 × 10~(15)cm~(-3) and mobility of 20.61 cm~2· V~(-1)·s~(-1).The obtained Cu_2 O thin films with suitable properties are promising semiconductor material for fabrication of photovoltaic solar cells.  相似文献   

10.
Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75% were also obtained.  相似文献   

11.
12.
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.  相似文献   

13.
The effect of nanofibrillated cellulose (NFC) on the dispersion and stabilization of zinc oxide (ZnO) nanoparticles in waterborne wood coatings was examined. Different coating compositions with and without NFC at varying concentrations of unstabilized, powdery or stabilized ZnO were produced. Properties of free coating films prepared via bar coating and wood specimens coated by brush with the coating compositions were evaluated. This included the effects of NFC and ZnO on the coating appearance, film formation, distribution of ZnO in the coatings, tensile properties and UV absorbing properties of free films and the effects of artificial weathering on the coated wood specimens. We showed that NFC significantly improved the distribution of the unstabilized ZnO in the coatings and prevented sedimentation of ZnO. NFC also improved film formation and inhibited crack formation during curing and weathering for more brittle binder materials. NFC had a pronounced matting effect but did not influence the coating colour. Colour stability of coated wood specimens during weathering was affected by the ZnO content, but needs further improvement. The results show that the biopolymer NFC is suitable to stabilize ZnO in coatings for wood, which could be of interest for other applications, as well.  相似文献   

14.
Vertically aligned TiO2 nanotubes have been fabricated on the indium-doped tin oxide (ITO) by a simple and versatile technique using the electrochemically deposited ZnO nanorods, oriented along the c-axis, as a template in the spin-on based sol-gel reaction of a Ti precursor. The diameter, length, and shape of TiO2 nanotubes were controlled by changing the initial ZnO nanorod template and the spin conditions during sol-gel process of a Ti precursor. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were used to confirm the successful formation of TiO2 nanotubes and characterize their structure and morphology. Furthermore, as an application of the TiO2 nanotubes, hybrid solar cells based on TiO2 and poly[2-methoxy,5-(2′-ethyl-hexyloxy)1,4-phenylenevinylene] (MEH-PPV) were successfully fabricated.  相似文献   

15.
CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells.  相似文献   

16.
《Ceramics International》2021,47(23):33390-33397
In this study, an efficient strategy is used to prepare perovskite photoactive layer with superb optoelectronic merits by utilizing polyaniline polymer as an efficient additive to improve perovskite quality. As a result, we prove that the small content of polyaniline (PANI) provides not only suppresses the perovskite defects and lead iodide but also produces a passivation impact. By regarding using macromolecular phases with long chain polymers, the generation of a PANI-perovskite cross-linking is possible. The cross-linking acts to bridge the perovskite crystals, mitigating carrier trapping by grain boundaries and achieving remarkable air stability against humid, which has not been obtainable with tiny molecules defect passivating materials. Also, PANI promoted the development of Lewis base adduct with the perovskite precursor, which, maximized the activation energy for nucleation and growth of the perovskite phase. Therefore, the perovskite layer with optimized PANI additive showed higher crystallinity in (110) crystal plane. After PANI addition, the perovskite grains found to be enlarged from 350 nm to 620 nm. Also, the PSCs with PANI showed suppressed luminescence effect, which indicates lower recombination rates. The SCLC measurements revealed that the PANI additive improving the interfacial contact between the ZnO and perovskite due to reduction the trapped density from 1.78 × 1016 cm-3 to 2.46 × 1015. Consequently, the champion cell yields an efficiency of 17.39% for 4% polyaniline doped electron transport material with negligible hysteresis. This reduces PSC instability generating a device that retained 93% of its original performance after 600 h maintaining in air conditions without any encapsulation.  相似文献   

17.
Aligned ZnO nanowires with different lengths (1 to approximately 4 μm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 μm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 μm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 μm.  相似文献   

18.
《Ceramics International》2017,43(16):13493-13499
Photocatalytic hydrogen production attracts great attention due to its clean energy conversion and renewable usage. In order to achieve efficient charge separations in photocatalysts, pseudo-microspherical ZnO/CdS core-shell structures were fabricated by precipitation method. ZnO pseudo-microspheres of about 2 µm diameter were uniformly synthesized, and they were used as core materials covered with various amounts of CdS shell nanoparticles. The highest hydrogen production rate from as-prepared photocatalysts was 146 μmol g−1 h−1 at 63 wt% CdS content under one sun irradiation condition. After thermal treatments, it was much improved to 241.2 μmol g−1 h−1 at the same CdS content possibly due to the increased crystallinity and efficient charge flows with an aid of additional CdO component. Reproducibility of hydrogen production revealed stable mode of operation for three consecutive runs. Therefore, ZnO/CdS/CdO ternary photocatalyst systems provide efficient charge separations and electron flows for improving solar hydrogen production by suppressing electron-hole recombinations.  相似文献   

19.
The electrochemical behavior of zinc in caseinate solution at pH 10 was investigated. Current–potential curves and weight loss measurements by atomic absorption showed that the anodic dissolution rate of the metal is higher than that obtained in NaOH solution (pH 10). Anodic treatment of zinc alloy at constant potential in such solutions induces the growth of a coating which presents, after drying, strong adherence and a good protection effect in aggressive solution (0.2 M NaCl+0.2 M Na2SO4). IR and ESCA spectrophotometric analysis showed that the zinc ions mainly participated in the growth of a casein coating, probably in a complexed form.  相似文献   

20.
This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号