首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex anticorrosion coating for ZK30 magnesium alloy   总被引:2,自引:0,他引:2  
This work aims at developing a new complex anticorrosion protection system for ZK30 magnesium alloy. This protective coating is based on an anodic oxide layer loaded with corrosion inhibitors in its pores, which is then sealed with a sol–gel hybrid polymer. The porous oxide layer is produced by spark anodizing. The sol–gel film shows good adhesion to the oxide layer as it penetrates through the pores of the anodized layer forming an additional transient oxide–sol–gel interlayer.The thickness of this complex protective coating is about 3.7–7.0 μm. A blank oxide–sol–gel coating system or one doped with Ce3+ ions proved to be effective corrosion protection for the magnesium alloy preventing corrosion attack after exposure for a relatively long duration in an aggressive NaCl solution.The structure and the thickness of the anodized layer and the sol–gel film were characterized by scanning electron microscopy (SEM). The corrosion behaviour of the ZK30 substrates pre-treated with the complex coating was tested by electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET), and scanning ion-selective electrode techniques (SIET).  相似文献   

2.
The corrosion protection behaviour of organic–inorganic hybrid thin films on AZ31 and AZ61 magnesium alloy substrates has been studied. These films were prepared by a sol–gel dip-coating method. The organopolysiloxane precursors were γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethoxysilane (TMOS). An attempt was made to determine the possible relationships between the degradation of the sol–gel film and composition of the metal substrate during the exposure of the metal/coating system to 0.6 M NaCl aqueous solutions. For this purpose electrochemical impedance spectroscopy (EIS) and hydrogen evolution measurements were applied. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the sol–gel films formed on the surface of AZ61 alloy were far more perfect and uniform than those formed on the AZ31 alloy. This behaviour was attributed to the effect of the native oxide film initially present on the surface of the AZ61 alloy, which inhibited the attack of magnesium. Results indicated that the sol–gel coated AZ61 substrate tended to develop corrosion products slower than the sol–gel coated AZ31 substrate, trend that could change by prolonging exposure time. After 6 days of immersion, a clear inhibitive effect of the corrosion products formed during the test was observed in the case of the sol–gel coated AZ31, but not with the coated AZ61 alloy substrate, a phenomenon explained by the carbonate enrichment observed by XPS.  相似文献   

3.
Thin titanium dioxide films, deposited using RF PECVD and sol–gel techniques, were studied comparatively with respect to their bactericidal as well as self-cleaning properties. The effect of the deposition process on film morphology, chemical and crystalline structure, bactericidal activity and hydrophilic properties was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface profilometry, optical microscopy and contact angle measurements. It was found that the bactericidal activity of amorphous TiO2 films, produced using the RF PECVD method, as either comparable to or better than those of crystalline (anatase) films deposited by means of the sol–gel technique. One reason for such advantageous behavior of plasma deposited materials is thought to be their substantially higher surface roughness, as revealed by AFM measurements. The hydrophilic effect, induced with UV irradiation, was strongest in the case of sol–gel films, but the RF PECVD synthesized coatings were found to be only slightly less hydrophilic. The conclusion follows that both sol–gel and RF PECVD techniques are equally capable of producing titanium dioxide films of high photocatalytic quality.  相似文献   

4.
Hybrid sol–gel films have been prepared with diethoxydimethylsilane (DEODMS), methyltriethoxysilane (MTEOS) as a source of hydrolysable silane and tetra-propoxyzirconium (TPOZ) as a source of hydrolysable zirconium. In order to improve corrosion protection, an organic corrosion inhibitor: tetrachloro-p-benzoquinone (chloranil), has been incorporated into the sol–gel matrix. The effect of chloranil, added with various concentrations from 3 to 12 × 10−4 M, on the sol–gel film morphology and composition has been examined by atomic force microscopy (AFM) and glow discharge optical emission spectroscopy (GDOES), respectively. Addition of high additive concentrations (>9 × 10−4 M) strongly disorganised the sol–gel network. The anticorrosion properties of the doped sol–gel films have been characterised by electrochemical impedance spectroscopy (EIS) in chloride solution and have been compared to salt spray observations. Chloranil additions (<9 × 10−4 M) have significantly increased the corrosion protection of the sol–gel layers for a long term.  相似文献   

5.
Recently, an aqueous particulate sol–gel process using metallic chloride precursors was introduced to synthesize zirconium titanate. In this paper, the effect of annealing temperature on the structural and corrosion protection characteristics of spin-coated thin films obtained from this sol–gel system was investigated. Based on scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and spectroscopic reflectometry studies, it was found that the flatness and thickness of the thin films were decreased by increasing the annealing temperature. Also, the corrosion protection of stainless steel AISI 316L provided by the prepared coatings, as analyzed by electrochemical potentiodynamic polarization experiments in a simulated body fluid, was improved in this order: 500 °C-annealed sample<900 °C-annealed sample<700 °C-annealed sample, attributed to a compromise between the defect density and the adhesion of the films to the substrate.  相似文献   

6.
Silane sol–gel coatings are widely used as adhesion promoters between inorganic substrates, such as metals, and organic coatings. The aim of these pre-treatments is to enhance the corrosion protection performance of the organic coating improving the adhesion to the substrate and acting as a barrier against water and aggressive ions diffusion. It is a matter of fact that the silane sol–gel pre-treatments do not provide an active protection against corrosion processes except for the partial inhibition of the cathodic reaction. Inorganic pigments can improve the barrier properties of the silane sol–gel film, enhancing the resistance against corrosion. In this study, different amounts of montmorillonite nanoparticles were added to a water based silanes mixture in order to improve the barrier properties of the sol–gel coating. Hot dip galvanized steel was used as substrate. The sol–gel film consists of a combination of three different silanes, GPS, TEOS and MTES. The clay nanoparticles used in this study were mainly neat montmorillonite. The proper concentration of filler inside the sol–gel films was determined comparing the corrosion resistance of silane layers with different nanoparticles contents. Additionally, the effect of CeO2 and Ce2O3 enriched montmorillonite particles. The EIS analysis and the polarization measurements demonstrated that the optimal amount of neat montmorillonite nanoparticles is about 1000 ppm. The same electrochemical techniques highlighted the limited effect of the cerium oxides grafted to the clay nanoparticles on the corrosion resistance of the silane sol–gel film. The TEM analysis proved the presence of a nano-crystalline structure inside the silane sol–gel film due to the formation of crystalline silica domains.  相似文献   

7.
In this study, three usual silane precursors, tetraethoxysilane (TEOS), vinyltrimethoxysilane (VTMS), and 3-methacryloxypropyltrimethoxysilane (MPS), and different binary and triplet blends of them were polymerized via a sol–gel method under acidic conditions. 29Si NMR spectroscopy was used to characterize and quantify the degree of condensation of oligomers. The organic phase was based on a three-acrylate monomer trimethylolpropane triacrylate (TMPTA). The effect of prepared oligomers on the curing behavior of hybrid materials and the interaction between organic and inorganic phases were monitored via photo differential scanning calorimetry (Photo-DSC). Atomic force microscopy (AFM) was used to investigate the surface properties of UV-cured hybrid materials. Photo-DSC results showed that the addition of functionalized oligomers can increase both the photopolymerization rate and the final degree of conversion. They also indicated that oligomers containing MPS are more compatible with the organic phase than other oligomers. Topography and phase trace images of AFM showed that oligomers containing VTMS migrate to the surface of films and affect the water contact angle. In contrast to VTMS, the presence of MPS in oligomers causes the formation of covalent bonds between the organic and inorganic phases in the bulk of the film, and so the surface properties of the film remain unchanged.  相似文献   

8.
Silica-based organic–inorganic hybrid nanocomposite films have been developed by sol–gel method for corrosion protection of AA2024 alloy. The sol–gel films have been synthesized from 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) precursors. Interlinked organic–inorganic networks can be formed because of the presence of both epoxy and silicon alkoxide functionalities in the precursor molecules. In order to investigate the effective factors on the properties of organically modified silicates films (Ormosils), different coatings with different organic and hydrolysis water content were developed. The films were prepared by dip-coating technique. The chemical composition and the structure of the hybrid sol–gel films were studied by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. The corrosion protection properties of the films were studied by potentiodynamic scanning (PDS) and salt spray tests. The results indicate that the hybrid films provided exceptional barrier and corrosion protection in comparison with untreated aluminium alloy substrate.  相似文献   

9.
The preparation of ionogels by sol–gel processing has attracted much attention, because the final ceramic materials combine properties of both inorganic matrix (thermal and mechanical stability) and the ionic liquid (ionic conductivity). The aim of this study was to combine different imidazolium based ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4], 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4], 1-decyl-3-methylimidazolium tetrafluoroborate [DMIM][BF4] and 1-methyl-3-[3′-(triethoxysilyl)propyl]imidazolium chloride MTICl) with titanium(IV) butoxide to prepare homogenous hybrid fibers through aqueous sol–gel reaction. The study showed that ionic liquid miscibility with metal alkoxide plays an important role in the preparation of homogenous fibers. Unlike simple imidazolium salts functionalized ionic liquid was dispersed homogenously in fibers, but the main advantage is derived from its chemical structure. New stable ionic liquid can be involved in sol–gel processes through ethoxy groups and as a result it associates with titanium alkoxide network by covalent bonding providing non-leaking ceramic hybrid material. Indirect and direct characterization studies of the product were carried out by energy-dispersive X-ray spectroscopy (EDX), silicon-29 nuclear magnetic resonance spectroscopy (29Si NMR), scanning electron microscopy (SEM) and optical microscopies; also infrared spectra (IR) were recorded. Thermal analyses were performed by differential scanning calorimetry (DSC).  相似文献   

10.
The present work describes the anticorrosion features of inhibitor doped sol–gel coating on Al metal. Sol–gel coatings were prepared by using 3-glycidoxypropyltrimethoxysilane (GPTMS) as parent precursor. In order to improve the corrosion resistance property of coating, N,N-dimethylthiourea was added into the sol–gel matrix. The corrosion inhibitor doped sol–gel coating on metal was characterized by Fourier transform infrared analysis (FTIR) and scanning electron microscope (SEM). Inhibition effect of N,N-dimethylthiourea doped GPTMS coating on Al substrates in 1% NaCl solution was investigated using electrochemical impedance (EIS) and polarization studies. EIS results showed that the corrosion resistance of sol–gel coating significantly improved upon addition of N,N-dimethylthiourea. The study had outlined the nuances of doping an organic inhibitor to enhance the protection ability of sol–gel coating on Al metal.  相似文献   

11.
In the present work, thermal evaporation and sol–gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol–gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP) in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC) at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol–gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol–gel one.  相似文献   

12.
Core–shell LiFePO4/C nanocomposite has been prepared by a sol–gel method. The mean size of the spherical core LiFePO4 is about 30 nm, and thickness of carbon shell is about 3 nm. The bonding character on the interface of core–shell was revealed by soft X-ray absorption spectroscopy (XAS). The as-prepared sample was characterized by X-ray diffraction (XRD), Raman spectrum, Transmission electron microscope (TEM) and High-resolution transmission electron microscopy (HRTEM). Charge-discharge tests show the core–shell LiFePO4/C demonstrates high rate capability (106 mAh g−1 at 20 C) and good cycling performance (negligible capacity loss after 250 cycles).  相似文献   

13.
The effect of surface pre-treatments on the electrochemical behaviour of sol–gel coated AA2024-T3 alloys was studied in this work. Three different cleaning procedures were employed: degreasing, mechanical polishing, and chemical etching. The surface morphology was different depending on the pre-treatment. The smoothest surface corresponded to polished samples while the chemically etched ones had the highest roughness, even though the sol–gel film covered all the cavities. The hybrid sol–gel film was prepared by copolymerisation of two different sols, tetra-n-propoxyzirconium (TPOZ) as inorganic precursor and 3-glycydoxypropyltrimethoxysilane (GPTMS) as organic precursor. The corrosion resistance was evaluated using accelerated test (salt spray) and electrochemical measurements under continuous immersion. Both experiments indicated that degreased samples had better anticorrosive properties.  相似文献   

14.
The present work assesses the effect of the thermal activation of hydrotalcite particles when they are added to a hybrid sol–gel film to improve its corrosion properties. Although previous studies have demonstrated the anti-corrosion properties of as-synthesised hydrotalcite particles incorporated into sol–gel coatings, their inhibitive action has not been well-established. Some hypotheses suggest that it should be related to their anion exchange capacity, which increases when the hydrotalcite is thermally activated.Several techniques were used to characterise the uncalcined and calcined hydrotalcite: X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric and differential scanning calorimetry techniques. To analyse the inhibition action, hybrid sol–gel coatings were doped with 10 wt% of CHT. Accelerated tests and electrochemical impedance spectroscopy were used for performance evaluation between the sol–gel coatings doped with calcined and uncalcined HT.The results obtained indicate the superior behaviour of samples doped with calcined HT at longer immersion times, which suggests better inhibition action.  相似文献   

15.
A series of UV-cured organic–inorganic hybrid coating materials containing up to 20 wt.% silica were prepared by sol–gel method from tetraethoxy silane (TEOS) which is used as the primary inorganic precursor, and diallylphenylphosphine oxide monomer (DAPPO), aliphatic urethane diacrylate resin (Ebecryl 210) are employed as the source of the organic components. In addition, methacryloxypropyltrimethoxy silane (MAPTMS) was used as both a secondary inorganic source and a silane-coupling agent to improve the compatibility of the organic and inorganic phases. The DAPPO content in all the coating formulations were from 0 to 20 wt.%. The physical and mechanical properties such as gel content, hardness, adhesion, gloss, contact angle as well as tensile strength were measured. These measurements revealed that all the properties of the hybrid coatings improved effectively, in case of adding the sol–gel precursor and DAPPO monomer content in the hybrid systems. The photo-calorimetric-DSC studies showed that the double bond conversion of the hybrid coatings was faster than the coating materials without silica. The thermal stabilities of the UV-cured hybrid materials were investigated by thermogravimetric analysis. The results showed that the addition of sol–gel precursor and DAPPO into the organic network also improves the thermal-oxidative stability of the hybrid coating materials. The surface morphology was also characterized by scanning electron microscopy (SEM). SEM studies indicated that inorganic particles were dispersed homogenously throughout the organic matrix.  相似文献   

16.
This paper studies the effect of 5 wt% red mud particles addition to sol–gel films applied on AA2024-T3 aluminium alloy. The red mud powder was dried or calcined, previously to added to the sol–gel film, in order to analyzed the effect of the thermal activation. The RM particles were characterized using several techniques; x-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results confirm that the thermal treatment leads to several phase transformations which affect to gibbsite, Al(OH)3, boehmite, AlO(OH), and goethite, FeO(OH), species.  相似文献   

17.
In this study, bis-(triethoxysilylpropyl) phenyl phosphamide (BESPPA) was synthesized by the reaction between dichlorophenyl phosphine oxide and 3-aminopropyltriethoxysilane. The chemical structure of the BESPPA was characterized with Fourier transform infrared and NMR techniques. Flame retardant, BESPPA and sol–gel precursor containing hybrid materials were prepared by thiol-ene polymerization with the aim to improve their final thermal and flame retardant properties. The thermal stabilities of the phosphorous/sol–gel containing UV-cured hybrid materials were investigated by thermogravimetric analysis. The results showed that the addition of sol-gel precursor and BESPPA into the organic network also improves the thermal-oxidative stability of the hybrid materials. The flame-retardant properties of the UV-cured hybrid materials were also studied. Furthermore, the phosphorus–silicon synergistic effect on LOI enhancement and increasing flame retardancy of the UV-cured hybrid materials were demonstrated. An LOI enhancement from 20.7 to 26.5 is observed for organic resins containing both phosphorus and silicon. The surface morphology was also characterized by scanning electron microscopy (SEM). SEM studies indicated that inorganic particles were dispersed homogenously throughout the organic matrix.  相似文献   

18.
Encapsulated aluminum pigments were prepared by sol–gel derived inorganic–organic hybrid coatings. Aluminum pigments were first coated with sol–gel film by using tetraethoxysilane (TEOS) and vinyltriethoxysilane (VTES) as the precursor, followed by free radical copolymerization of styrene (St), divinylbenzene (DVB) and maleic acid anhydride (MAA) with the vinyl group of the VTES. The as-prepared encapsulated aluminum pigment was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Subsequently the stability of the aluminum pigments in alkaline aqueous media was examined. It was found that both the TEOS-and-VTES-coated (TV-coated) and the TEOS–VTES–St–DVB–MAA-coated (TVSDM-coated) aluminum pigments were superior in the stability test over the uncoated aluminum pigments. Furthermore, the corrosion protection efficiency of the TVSDM-coated aluminum pigments reaches 99.8%, indicating that the inorganic–organic hybrid composite layer on the surface of the aluminum pigments can protect them well.  相似文献   

19.
We have employed KrF excimer laser annealing (ELA) treatment on sol–gel derived indium–zinc oxide (IZO) precursor films to develop a method of low thermal-budget processing. As-coated IZO sol–gel film was dried at 150 °C and then annealed using KrF excimer laser irradiation under ambient air. The laser irradiation energy density was adjusted to 150, 250, 350, and 450 mJ/cm2 to investigate the effects of laser irradiation energy density on the microstructure, surface morphology, optical transmittance, and electrical properties of laser annealed IZO thin films. Results of GIXRD and TEM-SAED indicated that the ELA IZO thin films had an amorphous phase structure. The surface characteristics and electrical properties of laser annealed IZO thin films were significantly affected by the laser irradiation energy density. It was found that the dried IZO sol–gel films irradiated with a laser energy density of 350 mJ/cm2 exhibited the flattest surface, the highest average optical transmittance in the visible region, and the best electrical properties among all ELA samples.  相似文献   

20.
The aim of the present work is to apply the liquid–liquid interfacial crystallization using a piezoelectric inkjet nozzle to the sol–gel processing. The instillation process was compared with the batch process to elucidate the effectiveness of the inkjet technique on the liquid–liquid interfacial sol–gel processing. The effect of frequency and water concentration in titanium tetraisopoxide (TTIP) solution on titania particle properties was investigated for sol–gel processing with a piezoelectric inkjet nozzle. Titania particles produced by each process were calcined at 500 °C. The crystal structure, morphology, pore size distribution and specific surface area of titania particles were evaluated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption measurement. The photocatalytic activity of titania particles was evaluated by the photodegradation of methylene blue solution under UVC light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号