首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Metallic nickel powders with low and uniform residual oxygen content were produced from NiO using the molten salt electrolysis of CaO in CaCl2 melt. Suitable amount of CaO for the reduction was in the range of 0.5–3.0 mol% CaO.The electrical isolation of NiO from both electrodes could produce metallic Ni in CaCl2 melt. Separating the metal oxides from the cathode confirmed the mechanism of calciothermic reduction that the electrolysis of dissolved CaO in CaCl2 melt produces Ca, and that the dissolved Ca in molten CaCl2 successfully reduces NiO to metallic Ni. An average of about 600 ppm oxygen in Ni sample was achieved directly from oxide, when NiO was detached from the cathode.  相似文献   

3.
In this work, several thermodynamic assessments adopted widely for ZrO2–CaO system are reviewed and examined, the existing discrepancies are summarized, and a new assessment is carried out based on the formation enthalpy of two compounds (CaZr4O9 and Ca6Zr19O44) and experimental activity data concerning cubic solid solution. The thermodynamic parameters of all phases have been optimized by the least squares minimization procedure, a self consistent set of the optimized Gibbs energy parameters has been derived, which can be safely used to extrapolate into the multicomponent system. Compared with experimental data and the results in this work as well as the results reported previously, it is demonstrated that the present thermodynamic assessment is in better agreement with most of the experiments.  相似文献   

4.
Phase equilibria in the system HfO2–Y2O3–CaO were studied in the temperature range 1250° to 2850°C by both experimental methods (X-ray phase analysis at 20° to 2000°C, petrography, annealing and quenching, differential thermal analysis in He at temperatures to 2500°C, thermal analysis in air using a solar furnace at temperatures to 3000°C, and electron microprobe X-ray analysis) and theoretical means (development of a mathematical model for the liquidus surface by means of the reduced polynomial method). Phase equilibria were determined by the structure of the restricting binary systems. No ternary compounds were found. The liquidus was characterized by the presence of six four-phase, invariant equilibria. Solid solutions were based on monoclinic (M), tetragonal (T), and cubic (F) modifications of HfO2; C and H forms of Y2O3; CaO; and CaHfO3 that crystallized in two polymorphous modifications, namely, the cubic and rhombic perovskite-type structure.  相似文献   

5.
The relative partial molar enthalpies, Δ SiO2, of SiO2 in SiO2–M2O (M = Li, Na, K and Cs) binary and SiO2–CaO–Al2O3ternary melts were directly measured by drop-solution calorimetry at 1465 K and 1663 K. Δ SiO2 changes from exothermic to endothermic as silica content increases, confirming the tendency toward immisciblity seen from activity measurements. It is concluded that Δ SiO2 is negative due to acid-base reactions and charge-coupled substitutions when the melt is composed of fewer Q 4 and more Q 3 and Q 2 species, but positive due to structural strain when the melt is composed of mostly Q 4 species. The Δ SiO2 obtained by calorimetry is a useful measure of basicity, when comparing different alkali and alkaline earth oxides.  相似文献   

6.
Guohong Qiu 《Electrochimica acta》2008,53(12):4074-4081
The direct electrochemical reduction process of Nb2O5 powder was investigated by cyclic voltammetry and constant potential electrolysis with a novel metallic cavity electrode in molten calcium chloride at 850 °C. The products of both constant potential and constant voltage electrolysis were characterized by XRD, SEM and EDX. CaNb2O6 was formed upon addition of solid Nb2O5 into molten CaCl2 when CaO was present. During the electrolysis solid Nb2O5 was reduced to various niobium oxides of lower oxidation states, including some composite oxides, and then was converted completely to metallic niobium near −0.35 V (vs. Ag/AgCl), which was more positive than the reduction potential of Ca2+. Constant potential electrolysis was applied at the potentials near the reduction current peaks derived from the cyclic voltammetry curves, and cell voltages were monitored. The voltage was near 2.4 V when the oxide was metallized at −0.35 V (vs. Ag/AgCl). Nb2O5 pellet could be used to prepared metallic niobium at cell voltage 2.4 V in a larger electrolysis bath filled with calcium chloride at 850 °C. The experiment results further demonstrated the direct electrochemical reduction mechanism of Nb2O5 powder in a molten system.  相似文献   

7.
Chromium carbide (Cr3C2) and carbon nanotubes (CNTs) improved Ti/SnO2–Sb2O4 electrodes were successfully fabricated using pulse electro-co-deposition technique. The morphologies and phase constituents of these electrodes were characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). The service lifetime of anode was significantly increased by adding Cr3C2. The service lifetime of Ti/SnO2–Sb2O4–Cr3C2 and Ti/SnO2–Sb2O4–CNT–Cr3C2 electrode was 7.4 times and 5.6 times longer than that of the Ti/SnO2–Sb2O4 electrode, respectively. The catalytic activity of phenol oxidation on these electrodes was systematically investigated by the cyclic voltammetry and the chemical oxygen demand (COD) test. The Ti/SnO2–Sb2O4–CNT–Cr3C2 electrode shows the highest evolution oxygen potential, COD removal and current efficiency (CE).  相似文献   

8.
Equilibrium ratios Cr2+/Cr3+ of chromium oxide dissolved in CaO–chromium oxide–Al2O3–SiO2 melts have been determined by analysis of samples equilibrated at 1500°C under strongly reducing conditions ( p o2= 10−9.56 to 10−12.50 atm). The majority of the chromium is divalent (Cr2+) under these conditions and Cr2+/Cr3+ ratios at given constant oxygen pressures decrease with increasing basicity of the melts, expressed as CaO/SiO2 ratios. In addition, Cr2+/Cr3+ ratios, at a given CaO/SiO2 ratio, are relatively unaffected by the amount of Al2O3 present.  相似文献   

9.
Friedels salt, the chlorinated compound 3CaO · Al2O3 · CaCl2 · 10H2O (AFm phase), presents a structural phase transition at about 30°C from a monoclinic to a rhombohedral phase. It has been studied by X-ray powder diffraction and optical microscopy in transmitted light with crossed polarisers on single crystals prepared by hydrothermal synthesis. The high temperature phase was determined at 37°C from X-ray single crystal diffraction data. The compound crystallises in the space group R c with lattice parameters of a = 5.7358(6)Å and c = 46.849(9)Å (Z = 3 and Dx = 2.111 g/cm3). The refinement of 498 independent reflections with I > 2σ(I) led to a residual factor of 7.1%. The Friedels salt can be described as a layered structure with positively charged main layers of composition [Ca2Al(OH)6]+ and negatively charged layers of composition [Cl,2H2O]. The chloride anions are surrounded by 10 hydrogen atoms, of which six belong to hydroxyl groups and four to water molecules. The structural phase transition may be related to the size of the chloride anions, which are not adapted to the octahedral cavity formed by bonded water molecules.  相似文献   

10.
Glass-forming regions, valence states, and viscosities in SiO2–PbO systems containing various transition-metal oxides as a third component were investigated. The glasses were prepared by melting in an open atmosphere. The glass-forming regions ranged as follows: MnO≡ZnO > FeO1.5>NiO. The ratios Fe2+/(Fe2++ Fe3+) and Mn3+/ (Mn3++ Mn2+) in the glasses were determined by chemical analysis. The Fe2+/ (Fe2++ Fe3+) ratio in SiO2–PbO–FeO1.5 glasses ranged from 0.016 to 0.050. The Mn3+/ (Mn3++ Mn2+) ratio in SiO2–PbO–MnO glasses ranged from 0.056 to 0.30. The fraction of manganese (III) ions in the glasses varies considerably with the glass composition. The effects of transitionmetal oxides on the viscosity are discussed.  相似文献   

11.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

12.
The phase relations within the system Tl2O3–BaO–CaO–CuO including Ag have been studied with emphasis on the high-temperature superconducting phases TlBa2Ca2Cu3O8.5 (1223 phase), Tl2Ba2Ca2Cu3O10 (2223 phase), TlBa2CaCu2O6.5 (1212 phase), and Tl2Ba2CaCu2O8 (2212 phase) at 890°C in an oxygen atmosphere. 1223 has been found to be in equilibrium with a liquid phase that is Tl poor. 2223 and 2212 exhibit varying Tl/(Ba + Ca) ratios. The three-phase field 1223 + 2223 + 2212 has been identified. The results of this study emphasize that multiphase samples can be prepared which consist of three superconducting phases, each exhibiting a critical temperature of 100 K or above.  相似文献   

13.
The isoplethal sections CaAl2O4–MgO and CaAl4O7–MgO of the Al2O3–MgO–CaO ternary system have been experimentally established at 1 bar total pressure and air of normal humidity. The sections obtained provide new data and information that are in disagreement with thermodynamic evaluations and optimizations of the Al2O3–MgO–CaO ternary system published to date. These differences arise mainly from the inclusion, or exclusion, of the binary compound Ca12Al14O33, mayenite, as a stable phase in the reported studies of the system. The presence or absence of this compound within the system has an important impact on the solid state and melting relationships of the whole ternary system. The present study confirms the solid-state compatibility CaAl2O4–MgO and CaAl2O4–MgO–MgAl2O4 up to 1372°± 2°C, the peritectic melting point of the later mentioned subsystem.  相似文献   

14.
The importance of aluminum nitride (AlN) stems from its application in microelectronics as a substrate material due to high thermal conductivity, high electrical resistance, mechanical strength and hardness, thermal durability, and chemical stability. Yttria (Y2O3) is the best additive for AlN sintering. AlN densifies by a liquid-phase mechanism, where the surface oxide, Al2O3, reacts with Y2O3 to form an Y-Al-O-N liquid that promotes particle rearrangement and densification. Construction of the phase relations in this multicomponent system is essential for optimizing the properties of AlN. The ternary phase diagram of the AlN–Al2O3–Y2O3 was developed by Gibbs energy minimization using interpolation procedures based on modeling the binary subsystems. This paper aims at testing the resultant understanding experimentally at selected compositions using in situ high-temperature neutron diffractometry. These experimental results agree with the thermodynamic calculations of AlN–Al2O3–Y2O3. The ternary phase diagram has been constructed for the first time in this work. High-temperature neutron diffractometry has permitted real time measurement of the reactions involved in this ternary system, especially to determine the temperature range for each reaction, which would have been difficult to establish by other means.  相似文献   

15.
为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。  相似文献   

16.
The structural phase transition occurring in Friedel's salt, the chlorinated compound 3CaO·Al2O3·CaCl2·10H2O (AFm phase), was studied by synchrotron and standard X-ray powder diffraction. The compound transforms at 35 °C from a rhombohedral (rh) high-temperature (HT) phase [R−3c; a=5.744(2) Å, c=46.890(3) Å] to a monoclinic (m) low-temperature (LT) phase [C2/c; a=9.960(4) Å, b=5.7320(2) Å, c=16.268(7) Å, β=104.471(2)°]. The LT and HT phases were refined with the Rietveld method from synchrotron data recorded at 20 and 40 °C. Variations of the lattice parameters as a function of temperature are reported between 8 and 48 °C. The rh→m transition is characterized by a unit cell volume expansion of 1% and a movement of the interlayer species: a shift of 0.45 Å of the Cl anions along [010]h and a shift of 0.25 Å of the water molecules along [210]h of the hexagonal cell. The m phase distortion is due to an ordering of the hydrogen bonds between chloride anions and H-atoms of the water molecules.  相似文献   

17.
A thermodynamic evaluation of the ZrO2-MgO system has been developed and combined with previous assessments of the ZrO2–YO1.5 and YO1.5–MgO systems to describe the ZrO2–YO1.5-MgO Systems to describe the ZrO2–YO1.5-MgO system by means of Bonnier's equation. The calculated results are shown by isothermal and vertical sections, a projection of the liquidus surfaces, and the reaction scheme. Comparisons between calculated and experimental diagrams demonstrate that the calculations satisfactorily account for most of the available experimental data.  相似文献   

18.
Computer simulation was carried out for the kinetics of spinodal decomposition in the tetragonal TiO2–SnO2 system on the basis of a nonlinear diffusion equation. A time evolution of the microstructure and the effect of coherent strain on the separated two phases were investigated by Langer's approximate method and the finite difference method. It was shown that the composition fluctuations develop in the first stage of the spinodal decomposition, and the formation of interface and the grain growth appear in the second stage. The local stress field and the local strain field with the coherence of the lattice were calculated. Subsequently the appearance of the interface dislocations in the (100) and (010) planes was demonstrated to occur in the third stage. Physical interpretation was given to the experimental observations for the tetragonal TiO2–SnO2 system on the basis of those calculations.  相似文献   

19.
Stable and metastable phase relationships in the system ZrO2–ErO1.5 were investigated using homogeneous samples prepared by rapid quenching of melts and by arc melting. The rapidly quenched samples were annealed in air for 48 h at 1690°C or for 8 months at 1315°C. Two tetragonal phases ( t - and t '-phases) were observed after quenching samples heated at 1690°C to a room temperature, whereas one t -phase and cubic ( c -) phase were found in those treated at 1315°C. Since the t '-phase is obtained through a diffusionless transformation during cooling from a high-temperature c -phase, t - and c -phases can coexist at high temperature. The t - and c -phases field spans from 4 to 10 mol% ErO1.5 at 1690°C and from 3 to 15 mol% ErO1.5 at 1315°C. The equilibrium temperature T t-m 0 between the t - and monoclinic ( m -) phases estimated from As and Ms temperatures decreased with increasing ErO1.5 contents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号