首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to possess the merits of both building blocks, i.e. the rapid interfacial electron transport of TiO2-B narrow nanobelts (NBs) and the high surface area of TiO2 nanoparticles (NPs), the TiO2-B NBs and TiO2 NPs composites photoelectrodes were prepared with different weight ratios. The dye-sensitized solar cell prototypes were fabricated based on the composite photoelectrodes and the photoelectrical properties have been systematically studied. Although the amount of adsorption dye of composite solar cells decreased, the composite cells could obtain higher power conversion efficiency compared to pure TiO2 NP solar cell by rational tuning the weight ratio of TiO2-B NBs and TiO2 NPs, which was due to the faster electron transfer rate. The dye adsorption amount and interfacial electron transport, which together determined the overall photoelectrical conversion efficiency, were investigated by the UV–vis spectra, the electrochemical impedance spectra (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS).  相似文献   

2.
The compression method was applied for the preparation of plastic TiO2 porous films on a conductive indium–tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrate at low temperature for the generation of high-efficiency plastic dye-sensitized solar cells (DSCs). The compression parameters, including pressure and time, were varied in order to determine their effect on the photovoltaic performance of the plastic DSCs. The results from electrochemical impedance spectroscopy (EIS) showed that charge transport resistance in the porous TiO2 films (Rt) gradually decreased when the applied pressure was increased from 0 MPa to 150 MPa, which indicated a better connection between the TiO2 nanoparticles and electron transport in the TiO2 films. In addition, a longer press time led to an increased resistance of electron recombination (Rct) and an increased charge-collection efficiency. After optimization of the compression parameters, the efficiency of energy conversion was increased by approximately 81.6%. In addition, the efficiency of energy conversion was increased by an additional 4.65% under AM1.5 illumination.  相似文献   

3.
TiO2 nanotube arrays are very attractive for dye-sensitized solar cells (DSSCs) owing to their superior charge percolation and slower charge recombination. Highly ordered, vertically aligned TiO2 nanotube arrays have been fabricated by a three-step anodization process. Although the use of a one-dimensional structure provides an enhanced photoelectrical performance, the smaller surface area reduces the adsorption of dye on the TiO2 surface. To overcome this problem, we investigated the effect of DSSCs constructed with a multilayer photoelectrode made of TiO2 nanoparticles and TiO2 nanotube arrays. We fabricated the novel multilayer photoelectrode via a layer-by-layer assembly process and thoroughly investigated the effect of various structures on the sample efficiency. The DSSC with a four-layer photoelectrode exhibited a maximum conversion efficiency of 7.22% because of effective electron transport and enhanced adsorption of dye on the TiO2 surface.  相似文献   

4.
Recent advance in flexible electronics demands development of flexible energy sources. Of particular interests are flexible dye-sensitized solar cells (DSCs). However, a brittle nature of TiO2 materials is one of hurdles to realize flexible DSCs. Here we synthesized flexible photoanodes of TiO2 particles and single-walled carbon nanotubes (SWNTs). Metallic SWNTs provided a greater photovoltaic conversion efficiency than semiconducting SWNTs due to the more efficient electron transport. The metallic SWNTs also constructed effective mechanical network among TiO2 particles providing flexibility and durability. The photoanode was transferred on an indium tin oxide (ITO)-coated polyethylene terephthalate film and characterized for front-illuminated DSCs under the AM 1.5 simulated sunlight. There was only a small decrease in photovoltaic conversion efficiency with bending which was primarily caused by cracking of the ITO layer. Due to this limitation, the TiO2–metallic SWNT photoanode was transferred on a Ti foil and went through up to 1000 bending cycles. The cycled photoanode was assembled for back-illuminated DSCs due to the non-transparent Ti foil. There was no decrease in photovoltaic conversion efficiency even after 1000 bending cycles demonstrating excellent flexibility and durability.  相似文献   

5.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with organic sol or TiCl4 modified TiO2 and porous TiO2 photoanode and a triphenylamine-based dye (TPAR3) used as photosensitizer. Dark current measurements suggested that both modified TiO2 photoelectrodes had significantly reduced the recombination rate of photoelectrons due to the reduced bare FTO surface in comparison to porous photoelectrode. The DSSC based on modified TiO2 photoelectrodes showed improved photovoltaic parameters compared to the porous TiO2 photoelectrode. The overall power conversion efficiency (PCE) is 3.27%, 4.73% and 6.8% for porous, TiCl4 modified and sol modified TiO2 photoelectrodes, respectively. The improved PCE with modified TiO2 electrodes was attributed to the formation of a compact layer. This effectively improves adherence of TiO2 to FTO surface, providing a larger TiO2/FTO contact area and reducing the electron recombination by blocking the direct contact between redox electrolyte and the conductive FTO surface and enhances the electron collection efficiency.  相似文献   

6.
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.  相似文献   

7.
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.  相似文献   

8.
4-N,N-Dimethylaminopyridine (DMAP) was introduced into poly(ethyleneoxide)/oligo(ethylene glycol) (PEO/PEG) electrolytes for dye-sensitized solar cells (DSCs). The improved photovoltaic performance of DMAP-doped DSCs was attributed to the integrated effects of the upward displacement of the TiO2 band edge and the decrease in the electron recombination rate. Remarkably, the presence of DMAP suppresses electron recombination via two combined pathways involving the dissociation of triiodide to iodide by a complexation reaction and a modification of the surface state distribution in the band gap of TiO2. With the addition of DMAP, the open-circuit voltage enhances dramatically. The short-circuit photocurrent density has a small increase at low DMAP concentration and drops afterwards. The power conversion efficiency is 4.07%, which corresponds to a 63% increase over that of the DSC without DMAP.  相似文献   

9.
We have successfully introduced green phosphors LaPO4:Ce, Tb (G4) or (Mg, Zn)Al11O19:Eu (G2) into TiO2 photoelectrode of dye-sensitized solar cells. The conversion efficiency of the G4-doped device was enhanced by 30% compared with the pristine TiO2 photoelectrode. The green phosphor doped at 5-wt.% ratio contributed to the reduction of resistances of the surface and interface of the photoelectrode and to the great enhancement of the absorption spectrum in UV-visible and near-infrared regions. The internal resistances and absorbance of the photoelectrode directly affect the power conversion efficiency. Green phosphor plays an important role towards the realization of high-efficiency dye-sensitized solar cells.  相似文献   

10.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

11.
Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO2 nanoparticles had average crystallite size in the range 21–39 nm, whereas TiO2 nanowires showed diameter in the range 20–50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a specific value. An increase of 4.3% in cell efficiency was achieved by introducing 10 wt% nanowire into the as-synthesized TiO2 nanoparticles (WP1 cell). Furthermore, an increase of 27.6% in cell efficiency was achieved by using crystalline anatase-TiO2 nanoparticles rather than as-synthesized TiO2 nanoparticles in WP1 solar cell. It was found that the power conversion efficiency and short circuit current of WP1 cell were decreased down to around 30.8% and 39.1%, respectively using rutile nanoparticles rather than anatase nanoparticles. The improvement of cell efficiency was related to rapid electron transport and less recombination of photogenerated electrons, as confirmed by electrochemical impedance spectroscopy.  相似文献   

12.
In this paper, in order to improve the efficiency of dye-sensitized solar cells, we introduced zirconia [ZrO2] nanofibers into a mesoporous titania [TiO2] photoelectrode. The photoelectrode consists of a few weight percent of ZrO2 nanofibers and a mesoporous TiO2 powder. The mixed ZrO2 nanofibers and the mesoporous TiO2 powder possessed a larger surface area than the corresponding mesoporous TiO2 powder. The optimum ratio of the ZrO2 nanofiber was 5 wt.%. The 5 wt.% ZrO2-mixed device could get a short-circuit photocurrent density of 15.9 mA/cm2, an open-circuit photovoltage of 0.69 V, a fill factor of 0.60, and a light-to-electricity conversion efficiency of 6.5% under irradiation of AM 1.5 (100 mW/cm2).  相似文献   

13.
A mesoscopic nitrogen-doped TiO2 sphere has been developed for a quasi-solid-state dye-sensitized solar cell [DSSC]. Compared with the undoped TiO2 sphere, the quasi-solid-state DSSC based on the nitrogen-doped TiO2 sphere shows more excellent photovoltaic performance. The photoelectrochemistry of electrodes based on nitrogen-doped and undoped TiO2 spheres was characterized with Mott-Schottky analysis, intensity modulated photocurrent spectroscopy, and electrochemical impedance spectroscopy, which indicated that both the quasi-Fermi level and the charge transport of the photoelectrode were improved after being doped with nitrogen. As a result, a photoelectric conversion efficiency of 6.01% was obtained for the quasi-solid-state DSSC.  相似文献   

14.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

15.
In this study, hybrid silica-conjugated TiO2 photoelectrodes were developed in order to enhance the efficiency of a dye-sensitized solar cell. The relative changes in surface crystallite size and chemical surface states of TiO2 composites were investigated by XRD, XPS, and UV-vis spectroscopy. Therein, the chemical compositions of the nanostructured photoelectrode surfaces were observed to significantly change when the glass powder Si atoms became chemically bonded with the Ti atoms on the photoelectrode surface without appreciable changes to the crystalline structure of TiO2. Furthermore, a significant conversion of Si-Ox into Si-O at the surface of the photoelectrode was observed following the addition of glass powder, which confirms the covalent bonding of Si and Ti atoms into Ti-O-Si. A maximum cell efficiency (η from 5.8% to 8.5%) was observed when 2 wt% of the low-temperature glass powder was added to the TiO2 with a constant amount of dye loading. This observed peak in solar cell efficiently is most likely due to an increase in light harvesting, which is a result of an enhancement of light scattering and the coordination between Ti and Si to establish a Ti-O-Si bond.  相似文献   

16.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

17.
A bi-functional nanocrystalline TiO2 (nc-TiO2) layer able to offer both light-scattering and electron generating properties was prepared with a simple method through adding the basic NH3·H2O agent into an acid nc-TiO2 paste to form some big rod-like nc-TiO2 aggregates by the chemical sintering process. The influence of additional amount of NH3·H2O on the photovoltaic performance of the dye-sensitized solar cell with this bi-functional nc-TiO2 layer in the photoelectrode was studied. It was found that through controlling the additional amount of NH3·H2O and the thickness of the bi-functional nc-TiO2 layer, the highest energy conversion efficiency about 8.11% could be obtained, which was much higher than that of the dye-sensitized solar cell containing a single nc-TiO2 layer prepared with the original acid nc-TiO2 paste (4.34%).  相似文献   

18.
Due to the complexity of dye-sensitized solar cell modules, the conversion efficiency increased slightly over the years of development. The TiO2 photoelectrode, as core part in the module, plays an important role in the overall performance. Here, we conducted series of associative experiments on modification of the TiO2 photoelectrode to achieve a better performance. The paste was prepared using conventional P-25 powder, and the conversion efficiency was found to be increased from the initial 1.41% to 2.48% by optimizing paste additives. Further, a merchandised paste with smaller particle size was introduced to fabricate a double-layer cell with the P-25 paste, followed by a surface treatment with TiCl4. The final result was observed to be quite satisfactory with a sharp increase in the conversion efficiency of 6.51%.  相似文献   

19.
Nanostructural TiO2 films with large surface areas were prepared by the combined process of graft polymerization and sol–gel for use in dye-sensitized solar cells (DSSCs). The surface of the TiO2 nanoparticles was first graft polymerized with photodegradable poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP), after which the particles were deposited onto a conducting glass. The PMMA chains were removed from the TiO2 films by UV irradiation to generate secondary pores, into which titanium isopropoxide (TTIP) was infiltrated. The TTIP was then converted into small TiO2 particles by calcination at 450 °C, as characterized by energy-filtering transmission electron microscopy (EF-TEM) and field emission scanning electron microscopy (FE-SEM). The nanostructural TiO2 films were used as a photoelectrode in solid-state DSSCs; the energy conversion efficiency was 5.1% at 100 mW/cm2, which was higher than the values achieved by the pristine TiO2 (3.8%) and nongrafted TiO2/TTIP photoelectrodes (3.3%). This performance enhancement is primarily due to the increased surface area and pore volume of TiO2 films, as revealed by the N2 adsorption–desorption isotherm.  相似文献   

20.
A novel ternary-encapsulated spherical TiO2 aggregate (TES-TiO2) with submicron particle sizes was formed by blending commercial P25 TiO2 and two different sizes of TiO2 particles (synthesized by modified sol-gel and hydrothermal methods). A double-layered TiO2 electrode for dye-sensitized solar cells (DSSCs) was fabricated by depositing TES-TiO2 particles onto nanocrystalline mesoporous TiO2 (Meso-TiO2)-coated FTO glass by a cathodic electrophoresis technique and then calcined at 450 °C for 30 min. Compared to double-layered Meso-TiO2/P25 electrodes, the energy conversion efficiency (η) of DSSCs from the obtained Meso-TiO2/TES-TiO2 electrode was improved by 9.3%, from 5.94% to 6.49%. When the prepared double-layered Meso-TiO2/TES-TiO2 electrode was calcined at high temperature, a high-voltage electric field (HVEF) was introduced to assist crystallization. As a result, η was further enhanced by 8.6%, from 6.49% to 7.05%. Notably, compared to typical 20 nm TiO2 nanocrystallites applied in the active layer of DSSCs, the prepared loosely porous TES-TiO2 with submicron size increased the light-scattering effect and promoted dye molecule adsorption and the diffusion of electrolytes. In addition, introduction of the HVEF provided better connection among TiO2 particles, which facilitated electron transport and avoided charge recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号