首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用柠檬酸溶胶凝胶法合成了绿色发光材料γ-LiAlO2:Tb3+。用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光光谱(PL)等测试手段,研究了助熔剂H3BO3对γ-LiAlO2:Tb3+的物相、形貌和发光性能的影响。结果表明,样品仍为四方晶系,在238nm的紫外激发下,跃迁发射峰位于489nm,542nm,548nm,584nm和620nm,分别对应于Tb3+的5 D4→7F6,5 D4→7F5,5 D4→7F4和5 D4→7F3的能级跃迁。硼酸的加入,有利于样品荧光和形貌的改善,其最佳掺杂摩尔浓度为1.5%。  相似文献   

2.
采用溶胶-凝胶法合成了BaCeO3:Sm3+红色荧光粉,用XRD和FL分析表征了样品的结构及发光性能。研究了Sm3+掺杂量和电荷补偿剂对其发光性能的影响。所得样品为立方晶系,荧光光谱测试结果表明:Sm3+掺杂的BaCeO3在紫外波段有两个吸收带,分别位于258nm和353nm,对应于O2-→Sm3+和O2-→Ce4+电荷迁移带;BaCeO3:Sm3+在紫外波长353nm的激发下发射出Sm3+的特征光谱,其发射峰分别位于572nm、615nm和656nm处,与Sm3+的4 G5/2→6 HJ(J=5/2,7/2,9/2)电子跃迁相对应,样品发出强烈的橙红光。Sm3+的最佳摩尔掺量为0.4%,其浓度猝灭机理是Sm3+之间的离子交换作用。共掺电荷补偿剂Li+之后,BaCeO3:Sm3+的发光强度有着很大程度的提高,当Li+摩尔浓度为12%时,其发光强度达到最大。  相似文献   

3.
以黄磷炉渣为主要原料,制备了不同钆含量的Tb3+掺杂CaO-Al2 O3-SiO2系统微晶玻璃.采用差热分析仪、X射线衍射仪、荧光光谱仪研究了Gd2 O3含量对该微晶玻璃析晶及发光性能的影响.结果表明:在1%~4%的Gd2 O3添加范围内,Gd2 O3的添加使微晶玻璃析晶峰温度和析晶活化能均升高,对基础玻璃的析晶有一定的阻碍作用;在λem=542 nm的激发光谱中,Gd3+和Tb3+的特征激发峰强度均随Gd2 O3含量的增加逐渐增强,在λex=317 nm的发射光谱中,Gd2 O3的添加使Tb3+特征发射峰强度增加明显,微晶玻璃的荧光寿命逐渐增长.通过光谱图结合能级图分析,在该微晶玻璃体系中Gd3+对Tb3+具有敏化作用,Gd3+可通过共振传递的方式将能量传递给Tb 3+,从而提高Tb 3+掺杂黄磷炉渣微晶玻璃的发光强度.  相似文献   

4.
采用高温固相法分别制备Eu2+和Eu3+掺杂的Sr2MgSi2O7荧光粉.在356nm近紫外光激发下,Sr2MgSi2O7:Eu3+荧光粉呈多峰红光发射,主峰位于590nm、615nm、650nm和700nm,分别对应于Eu3+离子5D1→7FJ(J=1,2,3,4)能级的跃迁.在371nm近紫外光激发下,Sr2MgSi2O7:Eu2+荧光粉发射峰介于425~550nm之间,呈蓝光发射,主峰位于476nm,对应Eu2+的4f65d1→4f7跃迁.随着Eu2+浓度的增大,发射峰强度先增大后减弱.  相似文献   

5.
用高温固相法制备了Li6SrLa2Nb2O12:Pr3+,并通过X射线衍射仪及荧光光谱仪分析了其结构和发光性质.结果表明:激发光谱出现NbO7-6吸收和Pr3+的4f→4f5d激发跃迁;发射光谱出现强的绿光发射,其峰值位于491nm,同时在610nm处有弱的红光发射,这两种发射分别属于Pr3+的3P0→3 H4和1 D2→3 H4的电荷跃迁.Pr3+在Li6SrLa2Nb2O12:Pr3+中的最佳掺杂浓度为0.5mol%.  相似文献   

6.
采用高温固相法合成了Ba3P4O13:Ce3+,Tb3+荧光粉.研究了单掺Ce3+、单掺Tb3+以及Ce3+、Tb3+共掺杂时的光谱性质.发现Ce3+的激发光谱呈宽带峰,发射光谱有两个峰,且两者重叠严重,用高斯双峰拟合得到峰值为340 nm和363 nm的发射峰.Tb3+的激发光谱中以220 nm的激发峰最强,测得发射光谱为5D3、5D4能级的发射,表明在此体系中能级5D3和5D4间的无辐射跃迁过程不显著.通过Ce3+、Tb3+共掺,Tb3+的荧光发射明显增强.  相似文献   

7.
钠钙硅普通玻璃是现在应用最广的一种玻璃,特别是用在建筑物上,研究稀土掺杂钠钙硅玻璃发光性能有实际意义。利用高温熔融法制备了Eu3+掺杂钠钙硅系发光玻璃。测试了不同浓度Eu3+掺杂下钠钙硅系玻璃的激发光谱、发射光谱,分析了Eu3+掺杂浓度对其发光性能的影响,并研究了稀土离子Tb3+、Dy3+的敏化作用对玻璃发光特性的影响。结果表明:在掺杂浓度0.1 mol%~1.0 mol%范围内没发现浓度猝灭现象;Eu3+掺杂钠钙硅玻璃用394 nm(7F0→5L6)激发时主要有5个发射带集中于(5D0→7F0-4)跃迁,对应的发射峰分别为577 nm,590 nm,611 nm,652 nm,702 nm;等摩尔量的Dy3+掺入对玻璃的发光起到敏化作用,Tb3+与Eu3+共掺时,由于Tb3+自身发光分散了激发Eu3+发光的能量从而降低Eu3+特征发射强度。  相似文献   

8.
用高温熔融法制备了Eu2O3单掺和Ce/Tb/Eu三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其结构以及发光特性进行了研究.光谱分析结果表明:在394nm激发下,Eu2O3单掺杂的CBS发光玻璃的发射光谱中出现了Eu3+的特征发射峰.这些发射峰主要起源于Eu3+中的4f电子的f-f跃迁;在374nm激发下,三元共掺杂发光玻璃的发射光谱中同时观测到了起源于Ce3+、Tb3+和Eu3+的蓝色、绿色和红色的三基色发射,这些发射可进一步混合成为白光发射.此外,Ce/Tb/Eu三元共掺杂发光玻璃的发光颜色,随着Eu2O3含量的增加从蓝光逐渐过渡到白光,这显示出了发光颜色的可调节性,极大地扩展了其在白光发光领域中的应用.  相似文献   

9.
采用高温动态球磨固相法,利用Na2CO3、K2CO3和Li2CO3为助熔剂(一种或几种),制备了具有低维结构的红色LED荧光粉体CaxSr1-x-1.5yMoO4:yEu3+.研究了助熔剂用量和种类、基质材料中Ca2+的含量、合成的温度、反应时间及发光中心Eu3+浓度对荧光材料晶体结构和发光性能的影响.研究结果表明最佳工艺条件为:助熔剂0.24 Na2CO3-0.38K2CO3-0.38Li2CO3的较佳用量摩尔分数为6 mol%、Eu3+浓度8 mol%、Ca2+摩尔分数60 mol%、反应温度900 ℃和反应时间2 h.光谱测试结果表明,该荧光材料可被311 nm、395 nm和465 nm有效激发,发射峰在616 nm处.395 nm和465 nm与当前广泛应用的紫外和蓝光LED芯片的输出光波长相匹配.  相似文献   

10.
采用高温固相法合成了Tb3+掺杂和Tb3+/Ce3+共掺Ca3(BO3)2荧光粉.研究比较了两者的光谱特性,发现Tb3+在273 nm、373 nm处有2个激发峰,发射光谱反映了Tb3+的特征发射,即能观察到来自5D3和5D4的发射.Tb3+/Ce3+共掺时的激发光谱在273nm、373nm处有2个激发带,但以273nm为主,发射光谱中除了明显的Tb3+外亦能观察到Ce3+的发射谱线.在相同条件下比较两者的发射光谱可以看出共掺时的能量明显增强,说明Tb3+/Ce3+之间存在能量转移.对两种荧光粉样品进行了寿命测试和比较,发现共掺时的寿命有所增强,表明Ce3+在能量转移的过程中对寿命也有一定的影响.  相似文献   

11.
采用高温固相法和微波辅助溶胶燃烧法分别合成了Sr2MgSi2O7:Tb3+荧光粉。通过综合热分析、X射线衍射(XRD)、扫描电镜(SEM)和光谱分析等手段对试样进行表征.结果表明:微波辅助溶胶燃烧法合成的Sr2MgSi2O7:Tb3+荧光粉颗粒大小均匀,呈类球形,且合成温度比固相法降低了700℃;Sr2MgSi2O7:Tb3+荧光粉的激发光谱在300~500nm之间,主峰位于377nm处,在377nm近紫外光激发下,采用微波辅助溶胶燃烧法合成的Sr1.995MgSi2O7:005Tb3+荧光粉比高温法合成样品的发射强度高.  相似文献   

12.
采用高温固相法在1 200℃下制备了Ca3(PO4)2∶Eu3+红色荧光粉,并通过X射线衍射分析和荧光光谱分析表征,考察荧光粉的物相、发光性质以及激活剂Eu3+的最佳掺杂浓度,研究结果发现Eu3+取代Ca2+占据八面体中心格位,由于离子半径差异,产生大量晶格缺陷,影响其发光性能.为了进一步提高其发光强度,在荧光粉中引入了电荷补偿剂Na+.通过研究Na+浓度对荧光粉发光性质的影响,发现电荷补偿后荧光粉的发射强度是电荷补偿前发射强度的2.9倍左右,得到荧光粉最佳化学组成为Ca2.3Na0.4(PO4)2∶0.3Eu3+.根据缺陷的生成和反应原理,并结合晶体场环境的中心对称性变化,提出电荷补偿的微观机制主要包括缺陷反应以消除晶格畸变和降低晶格中心对称性以增强红光发射.  相似文献   

13.
采用高温固相法制备了Li6(La2Ca)Nb2O12:Dy3+荧光粉样品,通过X射线衍射分析了样品的晶体结构,并利用光谱技术研究了样品的光致荧光光谱.光谱分析结果表明,Li6(La2Ca)Nb2O12:Dy3+的激发光谱由两部分组成:一是位于200~290 nm的一个宽带,峰值位于269 nm,属于Nb—O、Dy—O的电荷迁移带的叠加; 二是位于310~500 nm之间的系列尖锐的吸收峰,这些激发峰属于Dy3+f →f跃迁.样品可被近紫外或蓝光LED有效激发.在269 nm激发下,样品在580 nm处有很强的黄光发射,色坐标为(0.470 3,0.492 7).随着Dy3+掺杂浓度的增加,样品的发光强度增强,当Dy3+浓度为10 mol%时出现浓度猝灭.  相似文献   

14.
采用高温固相法合成了Zn4B6O13:Ce/Tb和Ca3B7O13Cl:Ce/Tb光致发光材料,它们的发射光谱峰值分别位于542 nm和553 nm绿光区,并都归属Tb 3 的5D4→7F5特征能级跃迁,由于基质的组成不同,Tb3 的发射位置有所差异.依据Dexter理论分析,确定了在这两种不同基质中存在Ce3 →Tb3 的能量传递,且Ce3 是Tb3 的高效敏化剂.  相似文献   

15.
采用高温固相法制备了K_(1+x)Ba_(1-2x)BP_2O_8:xEu~(3+)(x=0.04,0.06,0.08,0.10,0.12)红色荧光粉,XRD和SEM分析了其晶相结构和形貌,并对其发光性能、CIE1931色坐标以及不同碱金属离子电荷补偿剂对发光性能的影响等进行了研究.结果表明,K_(1+x)Ba_(1-2x)BP_2O_8:xEu~(3+)具有单一相结构,空间构型为I42d,样品形貌不规则,发射光谱为一系列的尖峰,在主峰λem=594nm处,具有很强的红光发射和较窄的发射带,色坐标显示样品为发色纯度较高的橙红色光.加入电荷补偿剂Li+、Na+、K+和Cs+均提高了KBa0.8BP2O8:0.1Eu3+的发光强度,其中半径最小的Li+比Na+、K+和Cs+更易进入主基质晶格中,因此Li+的增强效果最为明显.由此可见K_(1+x)Ba_(1-2x)BP_2O_8:xEu~(3+)是一种具有巨大发展潜力的红色荧光粉.  相似文献   

16.
采用化学共沉淀法合成YAl3(BO3)4:Ce,Tb绿色硼铝酸盐发光材料,通过X射线衍射(XRD)和光致发光(PL)光谱对其晶体结构和荧光光谱进行研究.测试结果表明:YAl3(BO3)4:Ce,Tb发光材料属于三方晶系、空间群R32,掺入Ce3+,Tb3+离子后晶格结构没有变化;发光材料的发射光谱主峰位于541 nm处的Tb3+的5D4→7F5跃迁峰,Ce3+离子对Tb3+有敏化作用;掺杂的稀土离子配比为Ce:Tb=0.3:0.1,B的掺杂量为25%,在1 100℃下、高温烧结2h的样品的荧光强度最好.  相似文献   

17.
用高温固相法在还原气氛下制备掺Gd的YAG:Ce3+荧光粉,并用X射线衍射分析测定(Y1-y,Gdy)2.94Al5O12:Ce0.063+荧光粉的晶体结构,用970CRT荧光分光先度计测定激发光谱和发射光谱.研究Ce3+的不同掺入量对YAG:Ce3+荧光粉的发光性能的影响.结果表明,合成样品的结构属于立方形的钇铝石榴石晶体结构.激发峰位于475nm处,归属于Ce3+的4f到5d跃迁,发射峰位于542nm处,归属于Ce3+的5d到4f跃迁.  相似文献   

18.
采用高温固相法在弱还原气氛下,分别合成了单掺Ce3+、Gd3+和双掺Ce3+/Tb3+、Gd3+/Tb3+的ZnO-CdO-B2O3(ZCB)基质系列荧光体.光谱分析表明:Ce3+的5d→4f(2F7/2,2F5/2)和Gd3+的8P7/2→8S7/2跃迁的强发射分别对应于427 nm和574 nm,而Ce3+/Tb3+和Gd3+/Tb3+的强发射分别对应于546 nm和548 nm.双掺Ce3+/Tb3+、Gd3+/Tb3+的荧光体比单掺Tb3+的发射强度显著增强,这表明存在Ce3+→Tb3+、Gd3+→Tb3+的能量传递,且Ce3+和Gd3+都是Tb3+的优异敏化剂.  相似文献   

19.
采用沉淀法合成了YVO4:Eu3+,Bi3+荧光粉,利用XRD,SEM和TEM对样品的结构和形貌进行表征,并用荧光光谱仪测试了样品的激发和发射光谱。X射线衍射图分析表明,所制得的荧光粉与YVO4的物相一致,样品属于体心四方相。其扫描电镜和透射电镜照片显示颗粒为纺锤形,大小比较均匀,长径为250nm左右,短径为100nm左右。在275nm近紫外光激发下,该荧光粉的发光峰分别归属于Eu3+的5 D0→7 F1(596nm),5 D0→7F2(617nm,621nm),5 D0→7F3(654nm),5 D0→7F4(702nm)辐射跃迁。最强发射位于617nm左右,属于红光。研究了Eu3+浓度对样品发光强度的影响。随着Eu3+浓度的增加,发射峰强度增大,当Eu3+摩尔分数为12%时,峰值强度最大。Bi3+对Eu3+的发光有一定的敏化作用,当Bi3+摩尔分数达到5%时,敏化作用最强。  相似文献   

20.
O482.31 A摘要:利用高温固相法制备一系列Na33YSi3O9:Ce+,Tb3+荧光粉,通过X-射线衍射仪和光致发光光谱分别对其物相和发光性能进行表征.结果表明:在Na3YSi3O9共掺Ce3+和Tb3+并未改变其晶格结构;激发光谱主要由Tb3+的f-f跃迁以及Ce3+和Tb3+的4f-5d跃迁组成;在320 nm激发下,发射光谱出现Tb3+的f-f和弱Ce3+的5d-4f跃迁发射,其主峰来自于Tb3+的5D4→7F5跃迁;色坐标为(0.2402,0.4429);由于Ce3+对Tb3+的敏化作用和浓度猝灭,Tb3+的发射强度随着Tb3+或Ce3+掺杂量的增加先提高后减弱.Ce3+和Tb3+的最佳掺杂量分别为0.04和0.25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号