首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon supported Pt–Sn alloy catalysts were prepared by reduction of Pt and Sn precursors with formic acid, and their electrocatalytic activity for methanol oxidation was compared with commercial Pt/C and Pt75Sn25/C electrocatalysts. By X-ray diffraction analysis it was found that the Pt lattice parameter increases with the addition of Sn, indicative of alloy formation. It was confirmed that Sn exhibits cocatalytic activity for CO oxidation. The onset potential for the methanol oxidation reaction of the Pt–Sn electrode was approximately 0.1 V smaller than that on Pt both at room temperature and at 90 °C. The best performance in a direct methanol fuel cell was obtained using the Pt75Sn25/C alloy catalyst prepared by the formic acid method as the result of an optimal balance of Sn content, degree of alloying and metal particle size.  相似文献   

2.
In this work, we have investigated an aerosol-derived templated electrocatalyst for electro-oxidation of small organic molecules in alkaline media. Templated Pt-Sn electrocatalysts are compared to templated Pt catalysts both synthesized in an aerosol synthesis technique. In this synthesis approach, mono-disperse silica nanoparticles are used to template the metallic precursors. Structural and compositional analysis of the nanostructured materials are performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET surface area measurements. The aerosol-derived templated electrocatalysts are examined in conjunction with an anion exchange ionomer for ethanol, methanol and CO oxidation in alkaline media. The electrochemical studies include cyclic voltammetry, chronoamperometry and voltammetric adsorption of adsorbed CO.  相似文献   

3.
Porous Ni deposits, prepared by cathodic deposition, were modified by immersing them in acid deaerated solutions containing Ru(III) or Ir(IV) chloride complexes with which they readily reacted, without any activation procedure, giving rise to spontaneous deposition of either Ru or Ir. The obtained electrodes were investigated by cyclic voltammetry, impedance spectroscopy and scanning electron microscopy. All data showed that the initial large area of the Ni deposits further increased upon immersion in solutions of noble metal complexes. EDX analyses proved that the deposition of Ru reached a limiting situation in some hours, while that of Ir was slower and continued for a longer time. The persistence of intense peaks due to the Ni(II)/Ni(III) redox system showed that Ru and Ir did not form a continuous layer able to prevent the contact between Ni and electrolyte. Hydrogen evolution was studied in 1 M NaOH solutions. Spontaneous deposition of both noble metals markedly improved the performance of porous Ni. The best results were achieved with Ir-modified electrodes, after immersion in Ir(IV) solution for 6 h. Tafel slopes and overpotentials of Ru-modified electrodes were not as low as those of Ir-modified electrodes.  相似文献   

4.
Bimetallic Pt–Cu carbon-supported catalysts (Pt(Cu)/C) were prepared by electroless deposition of Cu on a high surface area carbon powder support, followed by its partial exchange for Pt; the latter was achieved by a galvanic replacement process involving treatment of the Cu/C precursor with a chloroplatinate solution. X-ray diffraction characterization of the Pt(Cu)/C material showed the formation of Pt-rich Pt–Cu alloys. X-ray photoelectron spectroscopy revealed that the outer layers are mainly composed of Pt and residual Cu oxides, while metallic Cu is recessed into the core of the particles. Repetitive cyclic voltammetry in deaerated acid solutions in the potential range between hydrogen and oxygen evolution resulted in steady-state characteristics similar to those of pure Pt, indicating the removal of residual Cu compounds from the surface (due to electrochemical treatment) and the formation of a compact Pt outer shell. The electrocatalytic activity of the thus prepared Pt(Cu)/C material toward methanol oxidation was compared to that of a commercial Pt/C catalyst as well as of similar Pt(Cu)/C catalysts formed by simple Cu chemical reduction. The Pt(Cu)/C catalyst prepared using Cu electroless plating showed more pronounced intrinsic catalytic activity toward methanol oxidation than its counterparts and a similar mass activity when compared to the commercial catalyst. The observed trends were interpreted by interplay between mere surface area effects and modification of Pt electrocatalytic performance in the presence of Cu, both with respect to methanol oxidation and poisonous CO removal.  相似文献   

5.
Electrocatalysis of CO tolerance and direct methanol oxidation on PtMo/C (3:1 a/o) has been investigated in a PEM fuel cell environment. While a 3-fold enhancement is observed for CO tolerance when compared with PtRu/C (1:1), no such enhancement occurred for methanol oxidation. In situ XAS at the Pt L and alloying element K edges for Pt/C, PtRu/C and PtMo/C showed that in contrast to PtRu/C, both Mo and Pt surfaces play a distinct role for CO oxidation. While on the Ru surface there is a competition between oxide formation (from activation of water) and CO adsorption, Mo oxide surface showed no affinity for CO. This provided for efficient CO oxidation at low overpotentials on PtMo/C. However, the corresponding behavior for methanol oxidation showed that Mo oxy-hydroxides were inhibited from efficient removal of CO and CHO species in contrast to Ru oxides. The Mo surface oxides also showed a redox couple involving (V to VI) oxidation states in the presence of both CO and methanol.  相似文献   

6.
An electrochemical approach to nanoporous film-based gold catalyst design using the underpotential deposition and redox replacement technique is presented. The procedure consisted of the underpotential deposition (UPD) of copper on the gold nanoporous film, with subsequent replacement of the copper by palladium at open circuit in a palladium containing solution. The resulting electrode was studied using cyclic voltammetry and scanning electron microscopy. The electrocatalytic activity of as-prepared palladium nanoporous gold film electrodes toward the oxygen reduction reaction is presented.  相似文献   

7.
Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt.The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.  相似文献   

8.
Low loading platinum–cobalt (Pt–Co) cathode catalyst on a Nafion(Na+)-bonded carbon layer is fabricated by using galvanostatic pulse technique to show the advantage of electrodeposition for high utilization of catalyst in proton exchange membrane fuel cell (PEMFC). We observed that Pt–Co catalysts evenly exist on the surface of carbon electrode and its thickness is about 5.8 μm, which is four times thinner than conventional Pt/C. Improved single cell power performance of Pt–Co cathode catalysts with a ratio of 3.2:1 compared with Pt/C is clearly presented.  相似文献   

9.
0.5 wt% palladium supported on exchanged BEA and FAU zeolites were prepared, characterized and tested in the total oxidation of volatile organic compounds (VOCs). The BEA and FAU zeolites were exchanged with different cations to study the influence of alkali metal cations (Na+, Cs+) and H+ in Pd-based catalysts on propene and toluene total oxidation. The exchange with different cations (Na+, Cs+) and H+ led to a decrease of the surface area and the micropore volume. All Pd/BEA and Pd/FAU zeolites were found to be powerful catalysts for the total oxidation of VOCs. They were active at low temperature and totally selective for CO2 and H2O. However, their activity depends significantly on the type of zeolite and on the nature of the charge-compensating cation. The activity order for propene and toluene oxidation on FAU catalysts, Pd/CsFAU > Pd/NaFAU > Pd/HFAU, is the reverse of the activity order on BEA catalysts: Pd/HBEA > Pd/NaBEA > Pd/CsBEA. The catalytic activities can be rationalized in terms of the influence of the electronegativity of the charge-compensating cation on the Pd particles, the Pd dispersion, the PdO reducibility and the adsorption energies for VOCs.  相似文献   

10.
PtRu electrodes with Ru surface concentration ranging from 20 to 50% were prepared by electrolysis of Ru(NO)(NO3)3 at a constant potential and/or by spontaneous Ru deposition performed at open circuit potential from a RuCl3 solution. The amount of either spontaneously or electrochemically deposited ruthenium on the platinum electrode was determined by means of an electrochemical quartz crystal microbalance (EQCM). The effect of the Ru surface concentration on the rate of methanol electrooxidation was also investigated and correlated to the EQCM measurements.  相似文献   

11.
We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts’ inadequate activity and high Pt content.  相似文献   

12.
In this work, methane combustion over Pd/YSZ and Pd/CeO2/YSZ catalyst was investigated at a temperature range of 470–600 °C. For the first time, the feasibility of electrochemical promotion on palladium films prepared by wet impregnation was reported. The catalytic activity of palladium was found to increase over 160% via transference of oxygen ions from the solid electrolyte to the catalyst film. In addition, palladium supported over ceria and yttria-stabilized zirconia showed the highest activity. As expected, the presence of ceria allowed improving the oxygen storage capacity of the catalyst system.  相似文献   

13.
Qingfeng Yi  Fengjuan Niu 《Fuel》2011,90(8):2617-2623
Novel porous Pd particles (nanoPd-PEG, nanoPd-PEG-EDTA, nanoPd-HCHO-EDTA, nanoPd-EG, nanoPd-HCHO and nanoPd-EG-EDTA) were synthesized by a hydrothermal method using different reduction agents in the absence and presence of EDTA and investigated as electrocatalysts for ethanol oxidation in alkaline solutions. Results showed that PdCl2 was hydrothermally reduced to nano-scale palladium particles and a three-dimensional texture was formed for Pd particles. Presence of EDTA was favorable for the formation of Pd nanoparticles with small sizes of ca. 70 nm. Ethanol oxidation on the present Pd catalysts took place at a more negative anodic potential in 1 M NaOH solution. Among the electrocatalysts investigated, the electrocatalytic activity of the nanoPd-HCHO-EDTA was the greatest, which was characterized by the largest anodic peak current density of 151 mA cm−2 and lowest onset oxidation potential of −0.788 V (vs. SCE) for the positive scan. Very low charge transfer resistances on the nanoPd-HCHO-EDTA in 1 M NaOH containing various concentrations of ethanol were obtained according to the analysis for electrochemical impedance spectra (EIS). The prepared porous Pd catalysts were promising alternatives to Pt electrodes applied in alkaline direct alcohol fuel cells.  相似文献   

14.
Copper and zinc oxide based catalysts prepared by coprecipitation were promoted with palladium and ZrO2, and their activity and selectivity for methanol oxidative reforming was measured and characterized by N2O decomposition, X-ray absorption spectroscopy, BET, X-ray photoelectron spectroscopy, X-ray diffraction, and temperature programmed reduction. Addition of ZrO2 increased copper dispersion and surface area, with little effect on activity, while palladium promotion significantly enhanced activity with little change of the catalytic structure. A catalyst promoted with both ZrO2 and palladium yielded hydrogen below 150 °C. EXAFS results under reaction conditions showed that the oxidation state of copper was influenced by palladium in the catalyst bulk. A palladium promoted catalyst contained 90% Cu0, while the copper in an unpromoted catalyst was 100% Cu1+ at the same temperature. Palladium preferentially forms an unstable alloy with copper instead of zinc during reduction, which persists during reaction regardless of copper oxidation state. A 100-h time on stream activity measurement showed growth in copper crystallites and change in copper oxidation state resulting in decreasing activity and selectivity. A kinetic model of the reaction pathway showed that palladium and ZrO2 promoters lower the activation energy of methanol combustion and steam reforming reactions.  相似文献   

15.
Two types of Pt/Ru electrocatalysts, which have different structural characteristics, were prepared with different synthetic routes. That is, Pt/Ru electrocatalysts were synthesized by the coreduction and successive deposition methods, respectively. The structural and catalytic properties of Pt/Ru electrocatalysts were characterized by XRD, TEM, voltammetry and chronoamperometry. From the XRD analysis, coreduced and successively deposited Pt/Ru electrocatalysts had an alloyed structure. TEM analyses showed that all the electrocatalysts had a highly dispersed state on the Vulcan XC-72R substrate. From the voltammetry, the coreduced electrocatalysts displayed higher catalytic activity than the successively deposited electrocatalysts for the electrooxidation of methanol. These results explain why coreduced catalysts are better able to dehydrogenate methanol and have a greater CO tolerance than the successively deposited ones. But chronoamperometry showed that successively deposited Pt/Ru electrocatalysts had stability similar to that of the coreduced ones. Although the successively deposited electrocatalysts showed lower catalytic activity than the coreduced ones, their enhanced catalytic activity was obtained by the successive deposition method in the comparison of methanol oxidation current density with pure platinum electrocatalyst.  相似文献   

16.
Cobalt and iron phenylthiosubstituted phthalocyanines have been deposited on Au electrode surfaces through the self-assembled monolayer (SAM) technique. The so formed layers were studied using voltammetric and impedance techniques. These SAMs blocked a number of Faradic processes and electrocatalyzed the oxidation of nitrite. The electrocatalytic parameters of the cobalt and iron phenylthiosubstituted phthalocyanines deposited on Au electrodes in nitrite solution were studied. Nitrite overpotentials which are lower than ever reported were obtained in this work for the iron phenylthiosubstituted phthalocyanines with very high stability.  相似文献   

17.
This work provides a detailed electrochemical impedance study for formic acid electro-oxidation on size-controlled Pd/C nanoparticles, the synthesis of which was done by a simple protocol using ethylene glycol as a reducing agent. By controlling KOH concentration, this strategy provides a synthesis method for Pd nanoparticles with a selective size range of 3.9–7.5 nm. The as-prepared Pd nanoparticles exhibited size-dependent electrochemical property and electrochemical characterizations of four different Pd/C nanocatalysts (3.9, 5.2, 6.1, and 7.5 nm) showed that Pd particle with average size of 6.1 nm has the highest formic acid oxidation activity. Electrochemical impedance-based characterizations of formic acid oxidation on Pd/C suggested that at high potentials the adsorbed oxygen species could block the catalyst surface and inhibit the oxidation reaction, as reflected by the negative polarization resistance. Unlike Pd/C, the intermediate adsorbed CO species (COads) plays a critical role for formic oxidation on Pt/C and thus the impedance spectra of Pd/C and Pt/C appear different potential-dependent patterns in the second quadrant. The issue of CO was investigated by an impedance investigation of Pd/C in a mixture of formic acid containing dissolved CO.  相似文献   

18.
《Ceramics International》2016,42(4):5160-5170
Porous metal oxides hierarchical structures with controlled morphologies have received great attention because of their promising applications in catalysis, energy storage, gas sensing, etc. Porous Co3O4 hierarchical structures with controlled morphologies were synthesized on the basis of a pyrolytic conversion of Co-based metal-organic frameworks (Co-MOFs), which were initially grown in solutions containing Co(NO3)2·6H2O, 1,3,5-Benzentricarboxylic acid and pyrazine as solute and N,N-dimethylformamide (DMF) as solvent under a solvothermal condition. Porous Co3O4 with twin hemispherical and flower-like structures were obtained with the assistance of PVP by adjusting the amount of pyrazine. The results of nitrogen adsorption–desorption indicate the BET surface area (22.6 m2 g−1) of twin hemispherical Co3O4 structures is lower than that (33.3 m2 g−1) of flower-like Co3O4 structures. However, the pore size of twin hemispherical Co3O4 structures is smaller, which is centered at about 2.5, 4.0 and 20.0 nm. The Co3O4 with twin hemispherical structures exhibit more excellent electrochemical performance as anode materials for lithium ion batteries than that of flower-like Co3O4 structures, which may be attributed to the smaller particle size and compact porous structures with suitable pore size.  相似文献   

19.
The controlled uptake and electrochemical reduction of metal precursors PdCl42− and PdCl62− in polyaniline (PANI) is demonstrated. The formation of PANI/Pd composites is achieved with a reduction in proton doping and an increase in the oxidation of the polymer with Pd deposits physically blocking the nitrogen groups. High surface area filaments (PdCl42−) or a rough encapsulation (PdCl62−) of Pd metal on PANI are obtained. The structural differences highlight the influence of the metal precursor oxidation state on the morphology of the Pd deposits in PANI. Thermal gravimetric analysis provides an estimate of the Pd content for each composite of ∼40%. X-ray Photoelectron Spectroscopy and X-ray-excited Auger Electron Spectroscopy analyses confirm the deposition of Pd metal. The catalytic oxidation of methanol was demonstrated for both PANI/Pd composites in alkaline solutions that prohibit proton doping of the polymer. The data indicates that Pd metal acts as a solid-state dopant that may delocalize the charge on the polymer backbone to maintain conductivity. Methanol oxidation at PANI/Pd composites produced using PdCl42− was enhanced relative to the composite produced using PdCl62− and a planar Pd electrode. Comparison of PANI/Pd composite produced using PdCl42− with other Pd catalysts from the literature indicates surface poisoning is reduced when Pd is coupled with the polymer. The composite is robust and stable in alkaline solution with the charge density decreasing by 5% on the positive scan and 13% on the negative scan after 200 voltammetric cycles. The data also indicates that the reductive desorption of surface contaminants is possible, minimizing the catalytic loss due to surface poisoning.  相似文献   

20.
Mo-Cr-V-Bi-Si multi-component oxide catalysts were synthesized by three different coprecipitation methods and used in the controlled oxidation of methane to methanol and formaldehyde. It was shown that Mo content in Mo-V-Cr-Bi-Si oxides and the performance of these catalysts were strongly influenced by different coprecipitation methods. The highest methanol and formaldehyde selectivity of 80.2% could be achieved at a methane conversion of 10 % for the catalyst prepared by a particular method. The results of XRD indicated that the crystalline phase structures of catalysts were sensitive to Mo, V and Bi loadings. Bi(III) could combine with V(V) and Mo(VI) to form BiVO4 and γ-Bi2MoO6, whereas Cr seemed to form a single Cr2O2 crystalline phase in the presence of Bi. The effects of Mo and Cr loading on controlled methane oxidation were also investigated. Mo(VI) oxide appears to favor the formation of partial oxidation products and Cr(III) oxide seems to enhance the conversion of methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号