首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在聚酰胺(PA6)基体中填充导热性碳化硅(SiC)颗粒,通过热压法制备出系列SiC/PA化工复合材料;对复合材料的导热和介电性能分别进行研究,结果表明,SiC填料能够提高聚酰胺基体的介电和导热性能:在体积比为25%时,SiC/PA复合材料介电常数达到最高值8.7,是聚合物基体的2.0倍,其热导率也由0.25W/(m·K)提高至0.74W/(m·K)。为进一步提升复合材料的介电性能,在聚合物基体中,再添入具有高介电性能的钛酸钡(BT)陶瓷,制备出系列BT/SiC/PA三相复合材料,结果表明,当BT的体积分数为20%和50%的时候,复合材料的介电常数达到63,为聚合物基体的14.5倍,热导率也达到0.35 W/(m·K),加入BT后能大幅提高聚酰胺基体的介电性能,获得最优综合性能。综合上述研究可知,通过在PA中添加SiC和BT等填料,能够迅速提高聚合物的介电常数和导热系数,而介电损耗仍保持在较低水平(0.11及以下),可以得到具有介电和导热综合性能最优的聚合物化工复合材料。  相似文献   

2.
利用鳞片石墨(FG)的高导热性能,采用熔融共混法将鳞片石墨填充于聚酰胺66(PA66)中,制备出FG/PA66导热复合材料,研究了石墨填充量以及粒径对复合材料导热性能和力学性能的影响。研究表明:随着FG填充量的增加,复合材料的导热率显著增加,而力学性能逐渐降低。当填充量为50%时,导热率达到了3.07 W/(m·K),是纯PA66的12.3倍。力学性能在50%填充量时为最小值,拉伸强度和冲击强度分别为59.3 MPa和3.03 kJ/m~2。在相同填充量下,复合材料的导热率随着粒径增大而增大,当鳞片石墨的填充量为40%,填料粒径为150μm时,导热率达到最大值,为2.38 W/(m·K)。力学性能随粒径变化呈现先增大后减小的趋势,当粒径为100μm时,复合材料的力学性能最佳。  相似文献   

3.
为改善聚合物基导热复合材料的导热性能,单一粒径填料填充复合材料存在的不足,因此,本文探究了混合粒径六方氮化硼(BN)掺杂聚丙烯(PP)/聚乙烯(PE)复合材料的结构、热学和力学性能。通过激光导热仪、熔融指数仪、万能电子测试机和差示扫描量热仪(DSC)进行性能测试和结构表征。结果表明,混合粒径(5μm∶20μm)BN比例为3∶2时,其制备的复合材料导热系数可达0.52 W/(m·K),较单一粒径(5μm)BN填料填充复合材料提高33.4%;弯曲强度达到46.91 MPa,弯曲模量达到3 826.01 MPa,与单一粒径(5μm)BN填料填充复合材料相比,弯曲强度和弯曲模量分别提高23.34%和109.91%。将5μm粒径的BN在混合填料中的比例增加能够更有效提高复合材料的综合性能。  相似文献   

4.
以粒径为6.5μm的单一尺寸鳞片石墨(NG)和粒径为6.5μm和1μm的混合尺寸鳞片石墨为填料,超高分子量聚乙烯(UHMWPE)为基体树脂,通过热处理粉末混合法制备了具有隔离结构的高导热NG/UHMWPE复合材料。研究了NG尺寸对高导热石墨/超高分子量聚乙烯复合材料微观结构、填料取向、导热性能和通路以及力学性能的影响。结果表明,混合尺寸石墨的加入提高了复合材料在垂直于热压方向和平行于热压方向两个方向上的导热系数,最高达到10.5 W/(m·K)和5.08 W/(m·K),相较于纯UHMWPE,导热系数分别提高了20.91倍和9.60倍。此外,当石墨含量一致时,混合尺寸填料的复合材料在保持机械性能不下降的情况下,导热系数更高。  相似文献   

5.
以硅橡胶(PDMS)为基体,以碳化硅、氮化硅为导热填料,通过热压法制备了系列陶瓷/PDMS复合材料,并对其导热性能、介电性能进行测试,结果表明,在导热填料/硅橡胶复合材料中,当SiC/Si3N4=7∶3(体积比),且当填料占复合材料体积分数为15%时,其介电常数达到最高值9,是聚合物基体材料的3~4倍,介电损耗未发生明显改变,保持在0.05左右,击穿强度最大达到42kV/mm,热导率也达到了0.7W/(m·K)。为了提高导热复合材料的介电性能,在聚合物基体中,通过添加高介电性的钛酸钡陶瓷,制备出系列导热填料/介电陶瓷/硅橡胶三相复合材料,研究结果表明,当钛酸钡陶瓷占复合材料总体积的30%时,复合材料的介电常数提高约2倍,达到17,介电损耗仍保持较低水平,在0.07左右,击穿强度为25kV/mm,热导率达到0.72W/(m·K)。实验结果表明,通过在聚合物基体中添加导热填料和高介电陶瓷均能提高聚合物的介电性能,制备出具有高介电性和高导热性的聚合物基复合材料。  相似文献   

6.
采用双螺杆挤出、模压成型的方法以聚醚醚酮(PEEK)为基体,零维粒状碳化硅(SiC)和二维片状氮化硼(BN)为导热填料制备了导热PEEK/SiC-BN复合材料,研究了SiC粒径对PEEK/SiC-BN复合材料的导热性能、结晶性能以及热稳定性的影响。结果表明,SiC和BN的加入使复合材料的导热性能和热稳定性得到显著的提高,且当SiC的粒径为5μm时,复合材料的导热系数达到最大为0.63 W/(m·K)。同时,复合材料的熔融温度、结晶温度以及结晶度随SiC和BN的加入有不同程度的降低。  相似文献   

7.
以不同粒径的球形氧化铝(α-Al_2O_3)和少量二维氮化硼(BN)为填料,聚酰胺6 (PA6)为基体,通过熔融共混法制备了PA6/Al_2O_3/BN导热复合材料,并使用激光散射仪等对其各向导热性能进行了研究。由于两种填料粒子间的协同作用,复合材料的导热性能相对仅以氧化铝为填料时得到了明显的提升。研究还发现氧化铝粒子能降低BN在垂直于热压方向的取向系数,从而使复合材料导热系数的各向异性指数得到降低,材料在平行于热压方向上(Through-plane)也兼具较好的导热性能。在填料总体积分数为47%时(其中氧化铝为40%、BN为7%),PA6/Al_2O_3/BN复合材料在平行及垂直于热压方向(In-plane)的导热系数最高分别达到了2.32 W/(m·K)和2.90 W/(m·K),较之使用50% Al_2O_3的PA6/Al_2O_3复合材料,其导热系数在各方向上分别提升了26.78%、58.47%。此外,红外热图测试进一步表明了PA6/Al_2O_3/BN复合材料较好的散热性能。  相似文献   

8.
以端羟基聚二甲基硅氧烷为基胶、氧化铝为导热填料、甲基三甲氧基硅烷为交联剂,制备了脱醇型导热室温硫化硅橡胶。研究了氧化铝的形状、填充量、粒径以及不同粒径配比对硅橡胶导热系数的影响。结果表明:球形氧化铝填充量最大并且对硅橡胶黏度的影响较小。随着氧化铝填充量的增大,硅橡胶导热系数提高,最佳填充量为60%。大粒径氧化铝填充的硅橡胶导热系数高于小粒径氧化铝填充的硅橡胶。如果按照m(d20)∶m(d3)=3∶7的比例混合氧化铝,制备的硅橡胶综合性能最佳,导热系数为1.39 W/(m·K),拉伸强度和断裂伸长率分别为1.98 MPa和134%。  相似文献   

9.
以PA6为基体,铝粉和氧化铝粉为填料,利用双螺杆挤出机制备了复合材料,研究了复合材料的力学性能和导热性能。研究结果表明:铝粉和氧化铝粉作为填料复合填充到PA6中,复合材料的力学性能较纯PA6有较大程度降低,导热性能有较大程度提高,当铝粉添加量为30%、氧化铝添加量为20%时,复合材料的力学性能降低最少,导热性能提高最多,导热系数达0.81 W/(m·K)。  相似文献   

10.
以硅烷偶联剂改性的氧化铝为导热填料,聚酰亚胺改性环氧树脂为基体,通过高温模压法制备了Al2O3填充聚酰亚胺/环氧导热玻纤复合材料,研究Al2O3和聚酰亚胺含量对复合材料热性能、力学性能和介电性能的影响。结果表明,复合材料的热导率随着纳米Al2O3粒子含量的增加而增加。当Al2O3粒子的填充量为50%时,复合材料的热导率可达1.239W/(m.K)。复合材料冲击强度和弯曲强度随粒子含量的增加呈先增加后降低趋势,当Al2O3粒子的填充量为20%时,材料的冲击强度为376.3kJ/m2,弯曲强度为912.6MPa。聚酰亚胺改性的复合材料具有较好的介电性能、热稳定性和耐热老化性。  相似文献   

11.
以聚酰胺6(PA6)为基体, 氮化硼(BN)作为导热填料,经双螺杆挤出机熔融共混,模压成型制得导热绝缘复合材料。研究了BN含量、粒径、形状和不同BN粒径复配对复合材料导热性能的影响,并研究了BN含量和粒径对复合材料绝缘性能的影响。结果表明,在各种粒径下,复合材料热导率均随BN填充量的增加而增大;在BN粒径为5 μm、填充量为25 %(体积分数,下同)时,复合材料热导率达到1.2187 W/(m·K);在BN填充量相同时,填料粒径对复合材料热导率的影响不是简单的单调规律,呈现50、100 μm时较小,1、5、15 μm时较大,150 μm时最大的规律;片状BN填料比球状BN填料更有利于提高复合材料的热导率;2种不同粒径填料复配所填充的复合材料的热导率大于单一粒径填充的复合材料;5 μm与150 μm粒径BN复配,在填充量为20 %,配比为1:3时,复合材料的热导率最大,达到1.3753 W/(m·K),为纯PA6的4.9倍;在不同BN含量和粒径下,复合材料体积电阻率均能达到10000000000000 Ω·cm以上,满足绝缘性能。  相似文献   

12.
环氧树脂/氧化锌晶须/氮化硼导热绝缘复合材料的研究   总被引:6,自引:0,他引:6  
以环氧树(脂EP)为基体,分别以氧化锌晶(须ZnOw)和ZnOw/氮化硼(BN)混合物为导热填料,制备了EP导热绝缘复合材料。研究了填料含量对复合材料导热性能、电绝缘性能及力学性能的影响,并利用扫描电镜对复合材料的断面形貌进行了观察。结果表明:随着导热填料含量的增大,复合材料的导热系数和介电常数增大,体积电阻率下降,而拉伸强度呈先增大后减小的趋势;在填料含量相同的情况下,EP/ZnOw/BN复合材料比EP/ZnOw复合材料具有更好的导热性能;当填料体积分数为15%时,EP/ZnOw/BN复合材料的热导率为1.06W/(mK)而,EP/ZnOw复合材料的热导率仅为0.98W/(mK)。  相似文献   

13.
本文以高密度聚乙烯(HDPE)为基体,以自制的h-G-C-2/1体系杂化填料为导热填料,制备了GNPs/CNTs/HDPE导热高分子复合材料,重点对比了杂化填料和复配填料对GNPs/CNTs/HDPE复合材料在导热、导电及力学性能方面的影响。结果表明,GNPs/CNTs/HDPE导热高分子复合材料的拉伸强度为31.9 MPa,冲击强度为22.1 kJ/m^2,体积电阻率为690 MΩ·cm,热导率为0.759 W/(m·K),满足集成电路封装用技术参数要求。杂化填料的分散性优于复配填料,杂化填料在提高复合材料的拉伸性能方面优于复配填料,复配填料在提高复合材料的热导率方面优于杂化填料。本文所获得的研究成果为制备新型综合性能优异的集成电路封装用导热高分子复合材料提供了一条新的思路。  相似文献   

14.
为了提高聚丙烯(PP)的导热性能,扩大其使用范围,采用价格低廉的商用石墨对PP进行改性,利用转矩流变仪制备了PP/石墨导热复合材料。研究了粒径为2μm和20μm的石墨及其复配对复合材料热导率及力学性能的影响。结果表明,复合材料的热导率随着石墨用量的增加而显著增大,20μm石墨填充的复合材料热导率高于2μm石墨填充的复合材料;由于石墨的各向异性,层内热导率远高于层间热导率;将两种粒径的石墨复配,固定石墨总质量分数为40%,当2μm石墨与20μm石墨质量比为1︰5时,复合材料层间和层内热导率达到最大,分别为1.125 W/(m·K)和2.897 W/(m·K),比相同用量下单一2μm石墨填充PP分别提高了121%和61%,比单一20μm石墨填充PP分别提高了3.6%和20%。随石墨用量增加,单一粒径石墨填充的复合材料拉伸强度和弯曲强度呈现先减小后增大的趋势,随复配填料中20μm石墨用量增加,复配填料填充复合材料的力学性能呈下降趋势,但弯曲强度变化不大,拉伸强度也在10 MPa以上。  相似文献   

15.
以聚丁烯-1(PB-1)为基体,二维片状氮化硼(BN)为导热填料,采用模压成型的方法制备了PB-1/BN导热复合材料。研究了BN用量对PB-1/BN导热复合材料导热性能、力学性能、流变性能以及结晶性能的影响。结果表明:BN的加入使复合材料的导热性能明显提高,当BN用量为50%时,复合材料的导热系数达到1.28 W/(m·K),与纯PB-1相比提高了266%;随着BN用量的增加,复合材料的力学性能明显下降;同时,其结晶温度和结晶度也有不同程度降低。  相似文献   

16.
PP/滑石粉导热绝缘复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
采用聚丙烯(PP)为基体,不同粒径滑石粉为填料,通过双螺杆挤出机挤出制备导热绝缘的PP滑石粉复合材料。在滑石粉用量为3O%的条件下,探讨了粒径分别为3.6,6,12,30,50 μm的滑石粉对PP猾石粉复合材料的热导率、体积电阻率、力学性能和结晶性能的影响。结果表明,随着滑石粉粒径的减小,复合材料的拉伸强度和弯曲强度呈先增大后减小的变化趋势,而其热导率则呈先减小后增大的变化趋势。填充粒径为12μm的滑石粉时,复合材料的拉伸强度和弯曲强度达到最大值,分别为29.92MPa和52.58MPa,比纯PP分别提高了5.5%和12.8%。填充粒径为50μm的滑石粉时,复合材料的热导率最大,达到0.3237W/(m*K),比纯PP提高了32.7%。填充1:l的粒径为12μm和30μm滑石粉混合物时,PP复合材料的热导率为0.3184W/(m*K),高于相应的填充单一粒径滑石粉的PP复合材料。此外,所制备的PP滑石粉复合材料的体积电阻率均大于10^8Ω*cm  相似文献   

17.
为提高界面材料的导热性能,采用不同工艺对界面材料用导热氧化铝填料进行改性研究,通过考察导热氧化铝填料的形貌、添加量、复配比例对界面材料导热性能的影响,选取导热氧化铝填料最佳性价比配方和改性工艺。实验结果表明:当导热氧化铝填料以45 μm球形、45 μm类球形、5 μm角形按2∶3∶2质量比进行复配并进行干法-湿法联合改性时,其添加量可以达到95%(占有机硅油体系的质量分数),导热系数可以达到4.25 W/(m·K)。  相似文献   

18.
高导热低黏度环氧树脂灌封胶   总被引:1,自引:0,他引:1  
以E-51型环氧树脂为基体,Al2O3为导热填料,CYH-277为稀释剂制备高导热低黏度环氧树脂灌封胶。优化了硅烷偶联剂KH-560、稀释剂CYH-277的用量;分别采用NDJ-7型旋转式黏度计和Hot Disk型热常数分析仪测试其黏度和导热系数。结果表明:硅烷偶联剂KH-560用量为1.25%(wt)时效果最优;随CYH-277用量的增加灌封胶黏度、耐热性能均逐渐下降,最佳用量为25%(wt);随Al2O3用量增加,灌封胶的黏度、导热系数均增大;用量相同时,填充20μm Al2O3的树脂体系相比于填充6μm Al2O3树脂体系黏度小、导热系数大,复配两种粒径Al2O3对应树脂体系的导热性最好;复配Al2O3用量为86%(wt)时,导热系数达到2.23W/(m·K),此时灌封胶的黏度为30100mPa·s,仍保持较好的加工流动性。  相似文献   

19.
选用合适粒径的氮化铝和氧化铝为混杂导热填料、使用自制的硅烷低聚物为表面处理剂,以溶液插层法对混杂导热填料进行表面改性;然后与甲基苯基硅油混合制备了LED用低热阻导热硅脂。研究了导热填料的种类、粒径、表面处理剂种类及用量对导热硅脂的热导率和黏度的影响。采用LED灯作为实际测试平台表征了导热硅脂的导热性能。结果表明,当填料总质量分数为90.9%,粒径为5μm的氮化铝与粒径为1μm的氧化铝作混合填料且质量比为2.8∶1时,导热硅脂的热导率和黏度有较好的平衡;使用填料质量0.5%的硅烷低聚物对氮化铝和氧化铝混合填料进行表面处理有较好的处理效果;自制10号硅脂样品的黏度(25℃)为174 Pa·s,热阻为1.94℃/W,热导率为4.31 W/m·K。  相似文献   

20.
高导热室温硫化硅橡胶和硅脂   总被引:19,自引:7,他引:19  
研究了Al2O3、SiC两类导热填料以及填料的粒径分布对室温硫化硅橡胶和硅脂的导热性能和粘度的影响:发现当粒径分布适当时,可得到导热系数高、粘度低的室温硫化导热硅橡胶及导热硅脂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号