首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用机械化学活化水浸工艺对废旧磷酸铁锂正极材料中的金属锂进行回收,研究了共研磨试剂与废旧磷酸铁锂正极材料物质的量之比、球磨转速、球磨时间对金属锂浸出率的影响。在四种异晶型硫酸盐共研磨试剂与废旧磷酸铁锂正极材料物质的量之比为3∶1,球磨转速为400 r/min,球磨时间为4 h的条件下,共研磨试剂Na2S2O3、Na2SO3、Na2SO4和Na2S2O8的锂浸出率分别为42.7%、30.8%、58.3%和99.3%。以Na2S2O8作为共研磨试剂进行机械化学活化水浸回收锂时,具有较高的锂浸出率。滤液中的锂通过饱和碳酸钠溶液进行沉淀分离与提纯,得到的回收产物为Li2CO3,纯度可达98.5%。该方法实现了废旧磷酸铁锂正极材料中有价金属锂的高效回收。  相似文献   

2.
废旧磷酸铁锂电池中,Li具有非常高的经济回收价值。采用无机盐Fe2(SO4)3浸出体系、Fe2(SO4)3-H2O2协同浸出体系从废旧磷酸铁锂极片粉中选择性回收锂,考察了浸出剂种类、反应时间、温度、液固比、浸出剂添加量及氧化剂种类等对选择性浸出Li的影响。结果表明:硫酸铁浸出体系液固比5 mL/g,添加1.5倍原料的硫酸铁,在20℃下浸出反应20 min, Li浸出率为91.19%,P浸出率仅为0.02%;硫酸铁-过氧化氢协同浸出体系液固比5 mL/g,反应温度20℃,Fe2(SO4)3添加量为原料的0.6倍,反应20 min后,加过氧化氢调pH至4.1~4.6,Li浸出率可达99.09%,P浸出率为0,Li的选择性浸出效果极好。Fe2(SO4)3-H2O  相似文献   

3.
针对目前废旧磷酸铁锂处理工艺存在耗能高、污染大等问题,探索了一种废旧磷酸铁锂电池正极材料氯化焙烧工艺。焙烧过程中,以NH4Cl作为氯化剂,实现锂和部分金属物相转型,形成可溶性的氯化盐。探究NH4Cl用量、焙烧温度、焙烧时间、气氛条件等对氯化过程的影响。试验结果表明,废旧磷酸铁锂正极材料经氯化焙烧转型,可实现Fe、Al在氧化性气氛中转化为Fe2O3、FeOCl和AlPO4等难溶物,在水浸过程中原料中的不溶性杂质和难溶的Fe、Al化合物进入渣相,Li部分转化为可溶性物质,从而选择性浸出至溶液。本方案能够选择性从废旧磷酸铁锂电池中提取最有价值的金属锂,实现资源的回收、高效利用。  相似文献   

4.
随着磷酸亚铁锂锂离子电池市场大幅度增长,大量磷酸亚铁锂电池需要回收。以废旧磷酸亚铁锂正极材料湿法回收中的氧化、浸出和磷酸铁沉淀为重点,以锂盐和磷酸铁为目标产物,介绍国内外湿法回收废旧磷酸亚铁锂正极材料的研究进展。  相似文献   

5.
废旧锂离子电池的无害化处理和资源化回收是保护环境、节约资源、促进循环经济发展的必然选择。提出了一种钠盐焙烧—常温水浸工艺,用于从废旧磷酸铁锂电池中回收锂。系统研究了硫酸钠添加量、焙烧温度、焙烧时间等对锂选择性浸出的影响,并对焙烧产物进行了XRD和SEM表征。结果表明,在硫酸钠与磷酸铁锂正极粉质量比为1.6、焙烧温度650 ℃、焙烧时间2.0 h、水浸时间15 min的条件下,锂的浸出率达到96.81%,回收得到的硫酸锂产品纯度达到97.36%。与传统方法相比,该工艺具有不使用强酸、高效锂铁分离、回收过程简便等优势,具备广泛的工业应用前景。  相似文献   

6.
伴随着锂离子电池大规模退役潮的来临,废旧电池对环境的危害逐渐凸显,废旧电池中的有价金属作为“城市矿山”的资源化利用也受到了广泛关注。目前的回收工艺主要集中于提锂,而对提锂后的废渣关注度不够。以废旧磷酸铁锂电池材料提锂后的磷酸铁为研究对象,提出直接酸浸提纯工艺,通过改变浸出液的浓度、浸出时间、浸出次数等工艺参数,获得纯度较高的磷酸铁。结果表明,在原材料球磨处理、高温高压、水热反应等条件下,Al、Cu、Ca、Ni杂质元素的浸出率分别为36%、51.35%、89.48%、90.91%,说明酸浸对废旧电池回收磷酸铁中杂质具有明显的去除作用。试验结果为实现从废旧磷酸铁锂材料中回收碳酸锂和磷酸铁再制备磷酸铁锂的完整再生循环过程提供基础。  相似文献   

7.
研究了采用H2SO4+Na2SO3溶液从废旧锂电池正极材料中浸出有价金属镍、钴、锰,然后以共沉淀—固相法从浸出液中回收镍钴锰酸锂,考察了硫酸浓度、亚硫酸钠用量、浸出时间、温度和液固体积质量比对金属浸出率的影响。结果表明:在硫酸浓度2 mol/L、亚硫酸钠用量为理论量1.2倍、温度70℃、浸出时间90 min、液固体积质量比11 mL/1 g条件下,镍、钴、锰浸出率分别为98.21%、97.46%、96.87%;从浸出液中回收的镍钴锰酸锂结晶性良好,金属元素分布均匀,可用于制备电池正极。  相似文献   

8.
采用氯化焙烧—水浸的方法从某Li2O品位为3.23%的锂云母浮选精矿中回收锂,考察了焙烧过程中氯化剂用量、焙烧温度、焙烧时间,浸出过程中液固比、浸出温度、浸出时间对Li2O浸出率的影响。结果表明:在CaCl2用量为锂云母精矿质量的3/4,焙烧温度900℃,焙烧时间40min,焙烧渣在液固比3∶1,室温浸出40min的条件下,Li2O浸出率可达到95.36%,回收效果较好。  相似文献   

9.
为了高值回收利用磷酸铁锂电池废料提锂后的尾渣,本文对其开展了盐酸溶解过程条件优化及浸出动力学研究,重点研究了盐酸浓度、固液比和浸出时间等条件对提锂尾渣溶解效果的影响,并考察了主要成分磷酸铁在盐酸溶液中浸出的动力学。结果表明,在盐酸浓度3 mol/L、液固体积质量比15 mL/g、反应时间4 h、浸出温度30℃条件下,提锂尾渣的溶解率达到92.4%。磷酸铁在盐酸中的浸出过程符合无固态产物层的收缩核模型,表观活化能为25.45 kJ/mol,浸出过程受内扩散控制。浸出液采用沉淀法制备磷酸铁粉体,产品XRD图谱与磷酸铁标准图谱匹配良好,且EDS图谱显示P、Fe、O分布均匀,判断制备的粉体为磷酸铁,其中铁磷摩尔比为0.97,其他元素含量稀少,符合电池级磷酸铁行业标准,可用于电池生产。  相似文献   

10.
随着新能源汽车的迅猛发展,磷酸铁锂动力电池退役后将产生大量的废旧电池,若不及时处理将会污染环境和浪费金属资源。介绍了近几年来废旧磷酸铁锂电池正极材料回收利用技术进展,包括湿法回收有价金属、废旧磷酸铁锂修复再生和分解再合成磷酸铁锂等,并指出不同回收方法的优势与不足。最后展望了未来废旧磷酸铁锂电池回收技术的发展方向。  相似文献   

11.
针对废旧钴酸锂电池正极极片中钴的回收,以破碎后的LiCoO2正极材料为原料,对比研究了LiCoO2在H2SO4和H2SO4+H2O2两种条件下钴的浸出效果。结果表明:正极极片粉中LiCoO2在H2SO4+H2O2作用下的还原浸出效果优于单独H2SO4浸出。在H2O2还原浸出条件下,在反应温度80℃、液固比6、初始硫酸浓度250g/L、双氧水加入量3%、反应120min的条件下,钴浸出率能达到95%以上。SEM分析显示,不规则多边形状的LiCoO2物象消失,表明LiCoO2已完全分解。  相似文献   

12.
练俊杰 《世界有色金属》2020,(2):143-143,145
针对传统锂电池有价金属浸出回收工艺中存在的浸出率低,无法对废气锂电池中的资源进行有效利用的问题,开展对锂电池浸出工艺的研究。通过锂电池前处理工艺、正极材料浸出以及有价金属材料回收分离等工艺流程提出一种全新的锂电池有价金属浸出工艺。通过对比实验证明,该浸出工艺与传统浸出工艺相比,有效提高了锂电池中有价金属的浸出率,实现锂电池的资源化发展。  相似文献   

13.
随着锂电行业的发展,废锂离子动力电池也逐渐增多,为保护环境、缓解金属资源需求紧张的局面,需对废锂离子动力电池中的有价元素进行回收。分别从正极材料分离、浸出、有价金属分离、合成前驱体等方面论述了废锂离子动力电池三元正极材料回收研究现状,并分析了废锂离子动力电池三元正极材料回收优缺点,展望了废锂离子动力电池三元正极材料回收的研究方向。  相似文献   

14.
不同锂源对尖晶石锰酸锂性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶凝胶法,以氢氧化锂、醋酸锂、硝酸锂为锂源制备锂离子电池正极材料尖晶石LiMn2O4,分别用XRD和SEM对产物的结构和微观形貌进行表征,并对其电化学性能进行了测试。结果表明,用硝酸锂制备的LiMn2O4有较好的的微观形貌及较高的初始比容量,用氢氧化锂制备的LiMn2O4有较好的循环性能。  相似文献   

15.
以含锂废渣为原料,用水浸出,再用二氧化碳碳化的方法使氢氧化锂转化为碳酸锂和碳酸氢锂,实现了硼、锂的一步分离,并采用恒温热分解法处理碳酸氢锂溶液,制得碳酸锂。采用正交试验探究了达到最高回收率及产品纯度的条件。结果表明,此生产工艺简单,碳酸锂回收率可达94%以上,产品纯度可达90%以上。  相似文献   

16.
从锂离子二次电池正极废料—铝钴膜中回收钴的工艺研究   总被引:39,自引:2,他引:37  
根据锂离子二次电池正极废料-铝钴膜原料中LiCoO2的性质,提出了LiCoO2在硫酸、双氧水体系中的分解反应为:2LiCoO2 3H2SO4 H2O2→Li2SO4 2CoSO4 4H2O O2↑确定从中回收铝、钴的工艺流程为:碱浸→酸溶→净化→沉钴。碱浸液中的铝用硫酸中和制取化学纯氢氧化铝,回收率94.84%;钴以草酸钴的形式回收,产品质量达到赣州钴钨有限责任公司的草酸钴产品标准,直收率95.75%。每处理1t铝钴膜废料可获纯利4.56万元。  相似文献   

17.
废旧动力磷酸铁锂电池资源化回收技术研究进展   总被引:1,自引:3,他引:1       下载免费PDF全文
对当前国内外废旧磷酸铁锂电池的回收技术进行了较为全面的阐述,其中包括常采用的干法回收技术、湿法回收技术以及生物浸出回收技术,并根据各方法的优缺点进行了分析比较,同时对废旧磷酸铁锂电池的回收技术发展作了初步的展望。  相似文献   

18.
在Stober法的基础上采用二氧化硅对Fe_3O_4包覆钝化,使锂锰氧化物在二氧化硅界面生长,陈化、过滤、烘干、煅烧后生成Li_(1.6)Mn_(1.6)O_4@SiO_2@Fe_3O_4纳米锂离子筛前驱体。酸浸抽锂后得到磁性锂离子筛。SEM结合EDX测试表明,锂锰尖晶石相对均匀地包覆在钝化后的磁核表面,磁性离子筛的平均粒径为18.6nm。在配制的模拟卤水中,H_(1.6)Mn_(1.6)O_4对锂的平衡吸附量是8.78 mg/g,本文制备的H_(1.6)Mn_(1.6)O_4@SiO_2@Fe_3O_4对锂平衡吸附量可达6.01mg/g,除了Mg~(2+)平衡吸附量达到5.213 mg/g以外,其它离子的吸附量都在1.756mg/g以下,说明材料对Li~+的吸附有较好的选择性。用磁性锂离子筛开展反复吸附、脱附试验10次后,其对Li~+仍有良好的吸附效果,平衡吸附量稳定在5.1mg/g,锂解吸率在95%左右。磁性锂离子筛的饱和磁化强度为15.14emu/g,矫顽力为63.02G,可在外加磁场作用下实现与卤水的磁分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号