首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formulation of sunscreen products requires understanding of the solubilization of these products in different vehicles to obtain aesthetic preparations and to evaluate long-term stability. For this study, two different ultraviolet (UV) filters were selected: oxybenzone (powder) and octyl-methoxycinnamate (liquid). First, the solubility of these UV filters was tested using a three-component simplex-centroid design strategy. The mixtures were prepared with three oily phases used in this field of cosmetics: liquid paraffin, isopropyl myristate, and coconut oil. A phase diagram method was used to carry out a systematic study of submicron oil-in-water emulsions. Phase diagrams were produced by diluting fixed binary mixtures with water. The surfactant consisted of polyoxyethylene-20-sorbitan monostearate/sorbitan monostearate (50/50, w/w). The oily phase contained equal quantities of each oil studied. From this water/surfactant/oil ternary system, we selected two reference emulsions with receptively 75/5/20 and 68/7/25 proportions. Photon correlation spectroscopy (PCS) was used to investigate the influence of these two UV filters at several concentrations on droplet size and distribution of the oil droplets in the material. All emulsions were stored and checked every month for 6 months.  相似文献   

2.
This article reports the preparation and characterization of orange oil/water nanoemulsions stabilized by commercial nonionic surfactants based on ethoxylated lauryl ether (Ultrol line), by the phase inversion temperature (PIT) method. The orange oil/surfactant/water dispersions were prepared at different HLB values, by varying the concentrations of the surfactants as well as the concentration of the oil phase. The stability of the o/w nanoemulsions and the size distribution of the dispersed particles in these systems in general depended on the concentration of the oil phase used: the emulsions prepared with an oil phase of 14 wt% had smaller droplet size in the dispersed phase than the emulsions prepared in the presence of oil phases of 20 and 30 wt%. The nanoemulsions prepared with pure surfactants were more stable in the presence of Ultrol L60, but the surfactants' cloud point had a strong influence on the stability of the emulsions formed when this was very near room temperature. Because of this, we prepared systems containing mixtures of surfactants. Among these systems, the most stable nanoemulsions were those prepared with a Ultrol L100/Ultrol L20 mixture with HLB of 12.40. This behavior can be attributed to the complete solubilization in mixed micelles of the more hydrophobic surfactant.  相似文献   

3.
Two nonionic surfactants (Simulsol 98 and Simulsol OL 50) alone and I:I mixtures, corn oil-undecylenic acid and water formed emulsions, oily isotropic liquid phases, lamellar and hexagonal liquid crystal phases. The optimum release of undecylenic acid from these phases were controlled microbiologically. The active ingredient undecylenic acid, is released more from emulsion systems containing liquid crystals than only liquid crystalline and oily isotropic liquid phases.  相似文献   

4.
Abstract

Two nonionic surfactants (Simulsol 98 and Simulsol OL 50) alone and I:I mixtures, corn oil-undecylenic acid and water formed emulsions, oily isotropic liquid phases, lamellar and hexagonal liquid crystal phases. The optimum release of undecylenic acid from these phases were controlled microbiologically. The active ingredient undecylenic acid, is released more from emulsion systems containing liquid crystals than only liquid crystalline and oily isotropic liquid phases.  相似文献   

5.
W/O/W multiple emulsions with sodium salicylate as a model drug were prepared and evaluated for the effect of surfactant concentration and type on stability using microscopic and conductometric methods. Primary (W/O) emulsions were prepared with lipophilic surfactants (2-31% W/W relative to the oily phase). W/O/W emulsions were formed by mixing the primary emulsions with solutions containing 0.5 to 2% W/V hydrophilic surfactants. Optimum concentration of the lipophilic surfactant was 26% W/W. The optimum hydrophilic surfactant concentration was 1% W/V. Best stability was achieved with HLB 3.7 lipophilic and HLB 15.6 hydrophilic surfactants.  相似文献   

6.
Oily wastewater experimental study has been accomplished using two aqueous phases extraction methods on the basis of phase separation properties of non-ionic surfactants above the so-called cloud point curve and the solubilization phenomena of coacervate micelles (surfactant rich phase). Two commercial ethoxylate fatty alcohol surfactants (Oxo-C(10)E(3), Oxo-C(15)E(7)) were employed to treat three kinds of cutting oil wastewater, in order to define the conditions promoting cutting oils emulsions destabilization and cloud point extraction possesses simultaneously. Before extraction test, the phase diagrams of binary water/surfactants systems were drawn and the effect of some cutting oil additives on water-surfactant systems was, therefore studied. The results of oily wastewater extraction with respect to wt.% surfactant and temperature were expressed in terms of chemical oxygen demand (COD) of the dilute phase before and after extraction, residual chemical oxygen demand (COD(R)), residual concentrations of surfactant in the dilute phase (X(t,w)) converted to chemical oxygen demand (COD(T)) and the volume fraction of coacervate (phi(c)) at the equilibrium. The results obtained for each parameter which were also represented on three dimensional diagrams using an empirical smoothing method were in agreement with the experimental ones, where the COD(R) was reduced from 55 to 1.1 g O(2)l(-1).  相似文献   

7.
Abstract

W/O/W multiple emulsions with sodium salicylate as a model drug were prepared and evaluated for the effect of surfactant concentration and type on stability using microscopic and conductometric methods. Primary (W/O) emulsions were prepared with lipophilic surfactants (2-31% W/W relative to the oily phase). W/O/W emulsions were formed by mixing the primary emulsions with solutions containing 0.5 to 2% W/V hydrophilic surfactants. Optimum concentration of the lipophilic surfactant was 26% W/W. The optimum hydrophilic surfactant concentration was 1% W/V. Best stability was achieved with HLB 3.7 lipophilic and HLB 15.6 hydrophilic surfactants.  相似文献   

8.
The multiple (water-in-oil-in-water, w/o/w) emulsions were prepared using newly synthesized rosin-based polymeric surfactants. The oil phase used was liquid paraffin. These emulsions were evaluated for stability by various methods: conductivity, viscosity, particle size, and visual inspection. The stability studies were carried out at 37°C and 4°C for 1 month. The multiple emulsion prepared with polymer 7 was found to be more stable compared to the emulsions prepared with polymer 2.  相似文献   

9.
The multiple (water-in-oil-in-water, w/o/w) emulsions were prepared using newly synthesized rosin-based polymeric surfactants. The oil phase used was liquid paraffin. These emulsions were evaluated for stability by various methods: conductivity, viscosity, particle size, and visual inspection. The stability studies were carried out at 37°C and 4°C for 1 month. The multiple emulsion prepared with polymer 7 was found to be more stable compared to the emulsions prepared with polymer 2.  相似文献   

10.
Air-filled microcapsules were prepared by freeze-drying different oil-in-water emulsions containing biodegradable polyester as the wall-forming material. The aim of this work was to find an acceptable formulation with respect to the microcapsule suspension and the stability of the emulsion during the production process. The influence of various formulation parameters (concentrations of mannitol, polymer, and surfactant; pH; oil-in-water phase ratio) was investigated in a factorial design. The results were treated by ordinary least-square (OLS) regression and partial least-square regression (PLSR). In a previous work, air-filled microcapsules were successfully made using human serum albumin as the surfactant in the emulsion (1). In the present work, a new block copolymer based on poly(ethylene glycol) (PEG) was implemented as the surfactant to replace human serum albumin. It was found that the new block copolymer is a suitable replacement for human serum albumin. The concentration of the polymer in water and the concentration of the surfactant in the oil phase and the interaction between these variables had a significant influence on the stability of the emulsion at 60 degrees C. A surfactant concentration of approximately 2% (w/v) in water was necessary when the concentration of the wall-forming polymer was below 5% (w/v) in (-)-camphene. The concentration of the polymer in the oil phase influenced the yield, measured as the volume concentration of particles in suspension per milligram of polymer added and as acoustic effect per milligram of polymer. Low levels of polymer concentration in (-)-camphene (< 5% w/v) gave the highest yield. Excess polymer in the oil phase did not form microcapsules, but precipitated in the suspension or was included in the wall of the microcapsules. Addition of mannitol protected the microcapsules from being destroyed during freeze-drying and resulted in freeze-dried products with few cracks, little shrinkage, and higher suspension yield.  相似文献   

11.
Air-filled microcapsules were prepared by freeze-drying different oil-in-water emulsions containing biodegradable polyester as the wall-forming material. The aim of this work was to find an acceptable formulation with respect to the microcapsule suspension and the stability of the emulsion during the production process. The influence of various formulation parameters (concentrations of mannitol, polymer, and surfactant; pH; oil-in-water phase ratio) was investigated in a factorial design. The results were treated by ordinary least-square (OLS) regression and partial least-square regression (PLSR). In a previous work, air-filled microcapsules were successfully made using human serum albumin as the surfactant in the emulsion . In the present work, a new block copolymer based on poly(ethylene glycol) (PEG) was implemented as the surfactant to replace human serum albumin. It was found that the new block copolymer is a suitable replacement for human serum albumin. The concentration of the polymer in water and the concentration of the surfactant in the oil phase and the interaction between these variables had a significant influence on the stability of the emulsion at 60°C. A surfactant concentration of approximately 2% (w/v) in water was necessary when the concentration of the wall-forming polymer was below 5% (w/v) in (-)-camphene. The concentration of the polymer in the oil phase influenced the yield, measured as the volume concentration of particles in suspension per milligram of polymer added and as acoustic effect per milligram of polymer. Low levels of polymer concentration in (-)-camphene (<5% w/v) gave the highest yield. Excess polymer in the oil phase did not form microcapsules, but precipitated in the suspension or was included in the wall of the microcapsules. Addition of mannitol protected the microcapsules from being destroyed during freeze-drying and resulted in freeze-dried products with few cracks, little shrinkage, and higher suspension yield.  相似文献   

12.
液膜法处理高氟废水研究   总被引:10,自引:0,他引:10  
利用N205-N1923-煤油液膜体系,CaCl2溶液作内相,对高氟废水的处理进行了研究。利用正交实验确定了影响最大的因素,并研究了各种因素对处理的影响。经30min处理,外相F^-浓度可由0.500g/L降至0.010g/L以下,可达到工业排放标准。  相似文献   

13.
Vegetable oils have been largely consumed owing to the interest of pharmaceutical and cosmetic industries in using natural raw materials. The production of stable emulsions with vegetable oils challenges formulators due to its variability in composition and fatty acids constitution within batches produced. In the present work, it was studied that the influence of the size of carbon chain and the number of ethylene oxide moieties of the surfactant on the thermal behavior of eight emulsions prepared with marigold oil stabilized by liquid crystal phases. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the emulsions. The ratio of bound water was calculated, being between 29.0 and 42.0%, confirming the extension of the liquid-crystalline net in the external phase. Changing the lipophilic surfactant from Ceteth-2 to Steareth-2, there was an increase in the temperature of phase transition of the liquid crystal influencing the system stability. Calorimetric study is very useful in understanding the performance of liquid crystals with the increase of temperature and to estimate emulsions stability.  相似文献   

14.
Mathematical models are developed to compare aqueous surfactant washing to supercritical carbon dioxide (SCCO2) extraction. These two cleaning processes are potentially competitive technologies which can be used to remove oily contaminants from a solid waste. In both processes, the cleaning efficiency for a batch of waste is evaluated by quantifying the residual oil content in the treated sample. A mass transfer model is used to simulate a semi-continuous washing process, and the experimental data, obtained in a batch operation, are used to estimate the equilibrium parameters in the model. For SCCO2 extraction, a linear desorption model is used to describe the supercritical desorption of oil from the solid phase into the CO2 phase and the simulated results agreed very well with the experimental data. The oil removal in aqueous surfactant washing is viewed to be controlled primarily by the diffusional transport of oil from the interiors of the waste elements to the surface, thus, it can be significantly affected by the size of the particles. A pre-cleaning pulverization is then recommended to improve the cleaning efficiency without increasing any other operation costs. In SCCO2 extraction, the desorption of oil from the solid waste is the controlling step and consequently, the solvent flow rate has no influence on oil removal. Our theoretical studies show that the difference between the cleaning efficiencies of these two technologies is not significant, with the oil concentration in the washing products approximately 5% lower than that in the extraction products.  相似文献   

15.
ABSTRACT

In this work we investigated the effects of oil phase lipophilicity on in vitro drug release from topical o/w microemulsions (MEs) containing low percentages of emulsifiers. Three different lipids, isopropyl myristate (IPM), isopropyl palmitate (IPP), and isopropyl stearate (IPS), whose lipophilicity increased in the order IPM < IPP <IPS, were used as oil phase to prepare o/w MEs containing low amounts (7.7% w/w) of two surfactant/cosurfactant mixtures, isoceteth-20/glyceryl oleate (5:2) (MEs 1–3) and oleth-20/glyceryl oleate (5:2) (MEs 4–6). All the MEs were prepared using the phase inversion temperature (PIT) method.

Three active compounds (0.5% w/w), Naproxen (NAP), Idebenone (IDE), and Butylmethoxydibenzoylmethane (BMBM), were selected as model drugs and their release rates from PIT MEs were evaluated using Franz-type diffusion cells. All the MEs gave a mean droplet diameter ranging from 28 to 44 nm and showed a single peak in size distribution. The addition of IDE to MEs 1–6 did not significantly change ME droplet size. On the contrary, an increase of the droplet size beyond the ME limit (150 nm) was observed when isoceteth-20 was used as surfactant to prepare MEs containing NAP or MEs containing BMBM and IPS as oil phase. Pseudo-first order release rates were observed only for NAP from MEs 1–3, while MEs containing IDE showed an initial slow release followed by an increased release of the test compound. The release rate constants were found to be dependent on the ME composition and on the active compound incorporated. The highest release rate was observed from ME 1 containing IPM as oil phase and NAP as drug. As regards BMBM, its release rate was not calculated since no release was observed until 6 h from the beginning of the experiment. The cumulative amount of active compound released after 22 h was inversely related to drug lipophilicity (NAP Log P = 2,9; IDE Log P 3,5; BMBM Log P 4,8). These findings could be attributable to a reduced thermodynamic activity of the drugs in the vehicles containing the most lipophilic oil phase due to an increase of drug solubility which could lead to an unfavorable drug partition from the oil phase. The results of this study suggest that the choice of proper combinations of oil phase lipids and emulsifiers may allow achieving drug controlled delivery from topical o/w MEs with low emulsifier content.  相似文献   

16.
In this work we investigated the effects of oil phase lipophilicity on in vitro drug release from topical o/w microemulsions (MEs) containing low percentages of emulsifiers. Three different lipids, isopropyl myristate (IPM), isopropyl palmitate (IPP), and isopropyl stearate (IPS), whose lipophilicity increased in the order IPM < IPP 相似文献   

17.
ABSTRACT

Vegetable oils have been largely consumed owing to the interest of pharmaceutical and cosmetic industries in using natural raw materials. The production of stable emulsions with vegetable oils challenges formulators due to its variability in composition and fatty acids constitution within batches produced. In the present work, it was studied that the influence of the size of carbon chain and the number of ethylene oxide moieties of the surfactant on the thermal behavior of eight emulsions prepared with marigold oil stabilized by liquid crystal phases. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the emulsions. The ratio of bound water was calculated, being between 29.0 and 42.0%, confirming the extension of the liquid-crystalline net in the external phase. Changing the lipophilic surfactant from Ceteth-2 to Steareth-2, there was an increase in the temperature of phase transition of the liquid crystal influencing the system stability. Calorimetric study is very useful in understanding the performance of liquid crystals with the increase of temperature and to estimate emulsions stability.  相似文献   

18.
The objective of this investigation was to design and develop water-in-oil-in-water type multiple emulsions (w/o/w emulsions) entrapping acyclovir for improving its oral bioavailability. Multiple emulsions (MEs) were prepared and optimized using Span-80 and Span-83 as lipophilic surfactant and Brij-35 as hydrophilic surfactant. The physio-chemical properties of the w/o/w emulsions - particle size, viscosity, phase separation (centrifugation test) and entrapment efficiency were measured and evaluated along with macroscopic and microscopic observations to confirm multiple nature, homogeneity and globule size. Stability study, in vitro and ex vivo release studies were performed followed by in vivo studies in rats. Stable w/o/w emulsions with a particle size of 33.098 ± 2.985 µm and 85.25 ± 4.865% entrapment efficiency were obtained. Stability studies showed that the concentration of lipophilic surfactant was very important for stability of MEs. Drug release from the prepared formulations showed initial rapid release followed by a much slower release. In vivo studies in rats indicated prolonged release and better oral bioavailability as compared to drug solution. The overall results of this study show the potential of the w/o/w emulsions as promising drug delivery systems for acyclovir.  相似文献   

19.
The aim of the present study was to develop nanoemulsion as a possible vehicle for enhanced transdermal penetration of carvedilol (CVD). For screening of nanoemulsion components, solubility of CVD in oils, surfactants and co-surfactants was determined. Various surfactants and co-surfactants were screened for their ability to nanoemulsify the selected oily phases. The obtained results indicated that Acconon CC6® had shown good nanoemulsification efficiency (minimum surfactant required S min?=?46.52%?w/w) among the selected surfactants and further improved in presence of CO-20® (S min?=?37.11%?w/w). The ranges of nanoemulsion existence were delineated through the construction of the pseudo-ternary phase diagram at different ratio of surfactant mixture (S/CoS), and various nanoemulsions were selected from phase diagram of S/CoS ratio 1?:?1. The effect of content of oil and S/CoS (1?:?1) on the skin permeation of CVD was evaluated through an excised wistar rat skin using Franz diffusion cell. All the nanoemulsions showed a high skin permeation rate (92.251–161.53?µg/cm2/h), good enhancement ratio (3.5–6.2) and high permeability coefficient in comparison to control groups. The optimised nanoemulsion formulation with the highest skin permeation rate (161.53?µg/cm2/h) consisted of 0.25%?w/w CVD, 12.5%?w/w Miglyol 810®, 50%?w/w Acconon CC6®/CO-20® (1?:?1) and water. The above formulation had the smallest mean globules size (9.28?nm). The superior transdermal flux of CVD may be due to nanorange size of oil globules that lead to intimate contact with the skin layer. These studies suggest that the nanoemulsion system is a promising vehicle for the transdermal delivery of CVD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号