首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
耿美香  郭峰 《润滑与密封》2007,32(8):85-87,117
使用光干涉动态油膜厚度测量系统对不同启动条件下聚丁烯润滑油弹流油膜的形成过程进行了实验观测。结果表明,在纯滑动条件下,由于界面滑移弹流油膜存在反常的入口凹陷;卷吸速度相等时,较大的启动加速度产生较大的界面滑移,诱发较大的入口凹陷;不同的启动加速度,入口区的油膜形状和最小油膜厚度的变化也不相同。  相似文献   

2.
This paper describes interferometry measurement of the film profiles of sliding elastohydrodynamic lubrication (EHL) contacts with spin. In the custom-made EHL test rig, spin motion is introduced through adjusting the center offset of the ball-on-disc contact with respect to the disc rotation axis. A parameter, spin ratio S sp, is employed to represent the spin level, which is defined as the ratio of the Hertzian contact radius to the center offset. Experimental results show that with spin the film shape is obviously skewed, and the film thicknesses at the two side lobes are no longer the same; therefore, the symmetry of the classical horseshoe film shape is lost. The film thickness dependences on entrainment speeds are significantly influenced by the spin ratio S sp, and high spin ratios induce high speed indices. At a fixed spin ratio S sp, with increasing sliding speeds the film thickness difference between the two side lobes becomes large, and the horseshoe film shape is more distorted. When applied loads are raised, more spin is introduced, film thickness decreases, and film shape is obviously twisted.  相似文献   

3.
Interferometry has been widely utilized in elastohydrodynamic lubrication (EHL) film measurement since the 1960s. In-depth optical analyses are required to get more fundamentals of optical EHL film tests. In this paper, a stratified-layer model of optical EHL contact is numerically analyzed by the multi-beam interference approach. It is revealed that the high reflectance of the beam-splitter and the steel interface generate a deviation of the intensity profile from the two-beam interference. Previous experimental results about fringe contrast are reproduced, and the determination of the beam-splitter layer is theoretically clarified. Furthermore, some characteristics of spectrometry for ultra-thin film measurement are studied, and the dependence of the interference spectrum on the spacer layer thickness is displayed. The measurement simulation has theoretically confirmed the constant initial phase change assumed in practical measurement. It is theoretically demonstrated that in the spectrometry approach, TiO2 layer can generate spectrum with high finesse and may be used in the future application. The theoretical results in this paper are correlated with previous experimental practices, and the optical EHL technique can therefore be much better theoretically understood.  相似文献   

4.
Improving knowledge on the film forming behavior of greases is essential to be able to develop efficient greases. This article examines how operating conditions (e.g., temperature, lubrication condition [fully flooded/starved]) and base oil viscosity influence the film forming properties of greases by comparing the behavior of two lithium-based greases and their respective base oils in rolling point contact. It is found that the onset and degree of starvation is controlled by speed (u) × viscosity (ν)/load (W) factor (uν/W) and temperature and that low uν/W values promote entrainment of thickener into contact. Thus, grease with low base oil viscosity shows significant thickener entrainment in the low speed region compared to the one with high base oil viscosity, which leads to the formation of thickener-rich viscous material during extended running with the low base oil viscosity grease. The results suggest that the shape of the film thickness versus speed curve is viscosity and uν/W range dependent. Furthermore, for the test conditions used in this study, grease-lubricated contacts appear to shift from the initial fully flooded condition to starved condition over a prolonged running of 2 h. The results from this study concur with those reported in the literature that fully flooded oil elastohydrodynamic lubrication (EHL) theory or film thickness cannot be directly applied or taken as a guideline in grease-lubricated contacts.  相似文献   

5.
This paper presents an experimental study of the effect of boundary slip on the lubricating film shape and friction of an elastohydrodynamic lubrication (EHL) contact under isothermal conditions. Ball and disc pure sliding experiments were carried out with a high viscosity polybutene oil using a conventional optical EHL test rig. The film shape and friction were measured simultaneously. The results obtained from two discs with different coatings were compared. One disc was coated only with Cr, the partially reflective layer, and the other had an extra layer of SiO2 coating on top. When running under mild conditions of low load and speed, there was no evidence of any boundary slip effect. However, when the load increased, the Cr-coated disc produced lower film thickness and friction than the SiO2-coated disc. The Cr-coated surface had a larger contact angle, i.e., smaller surface energy, than the SiO2 surface, which reflects the weak bonding between the molecules of the surface and the lubricant. The study concludes that surfaces with low surface energy promote boundary slip at the EHL contact, leading to a reduction in friction and film thickness.  相似文献   

6.
滑动条件下弹流润滑的屈服膜厚与屈服边界   总被引:1,自引:1,他引:1  
本文讨论了弹流润滑的屈服问题,从润滑剂的极限剪应力可以得到屈服膜厚的表达式。屈服膜厚是弹流润滑膜的下降 ,当利用拟合公式得到的膜厚小于屈服膜厚时,由于润滑已经处在非牛顿区,所拟全公式不再适用。本文还给出了用膜厚形式表示的屈服准则,并详细讨论了最大压力,平均速度和滑滚比对屈服膜厚的影响。  相似文献   

7.
Experimental measurements of time dependent film thickness in entrapped liquids, measurements of viscosity under pressure, and simulations using realistic pressure–viscosity models contribute to improved understanding of the mechanisms of entrapment formation and persistence. The ambient viscosity and pressure–viscosity coefficient affect entrapment only as much as they are predictors of behavior at much higher pressure. Fragile liquids, such as lubricating oils, experience rapid increase in sensitivity of dynamic properties to temperature and pressure as the glass transition is approached. The fragility property of lubricants appears to be of overwhelming importance to entrapment which experimental evidence indicates will reduce starting friction.  相似文献   

8.
Spinning cannot be ignored in some elastohydrodynamically lubricated contacts. In this paper, spinning is incorporated into an elastohydrodynamic lubrication (EHL) contact of pure rolling and its influences on EHL films are studied. Results show that with increase in spinning, the symmetry of the film shape gets lost, and the minimum film thicknesses, located respectively at the two side-lobes, decrease and show more dependence on loads. The speed indices of the film thickness at the side lobes are higher than those of the classical EHL theory predicted. Numerical work has also been carried out to clarify the experiment measurements.  相似文献   

9.
Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-New-tonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little dif-ference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tan-gential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.  相似文献   

10.
The contacts of adjacent balls in a retainerless bearing are subjected to the zero entrainment velocity (ZEV). The existence of an effective elastohydrodynamic lubrication (EHL) film between contacts running under ZEV conditions has long been proven experimentally. However, the classical EHL theory predicts a zero film thickness under ZEV conditions. Mechanisms, such as the thermal viscosity wedge effect and immobile film theory, have been proposed to tentatively explain the phenomenon. However, detailed numerical results are needed to provide theoretical evidence for such film formations. This paper aims to simulate, based on the viscosity wedge mechanism, the film formation of EHL point contacts under ZEV conditions. Complete numerical solutions have been successfully obtained. The results show that the thermal viscosity wedge induces a concave film profile, instead of a parallel film (Hertzian) as postulated by some previous researchers. By the simulation solver developed, the variation of film thickness with loads, oil supply conditions and ellipticity parameters have been investigated. Some unique lubrication behaviors under ZEV conditions are demonstrated. Furthermore, preliminary quantitative comparisons with the latest optical EHL experiments are finished. Both results are in good correlation.  相似文献   

11.
This article is focused on the effects of the angle between lubricant entrainment velocity and sliding velocity on elastohydrodynamic film thickness distribution. Thin-film colorimetric interferometry was used to evaluate the film thickness distribution in smooth glass–steel contacts to provide basic data on the effects of the slide–roll ratio and the direction of sliding with respect to entrainment velocity. It was observed that as the sliding perpendicular to the entrainment velocity increased, the overall film thickness was reduced and asymmetry of the film profile with respect to the direction of the entrainment velocity increased. The asymmetry of the film profile with respect to the direction of the entrainment velocity increased with the entrainment speed or the overall film thickness. When the speed of the glass disk was larger than that of the steel ball, a dimple was formed even if there was a difference in direction between the entrainment and sliding velocities. A part of the dimple was exhausted from the elastohydrodynamic lubrication (EHL) conjunction as the angle between the entrainment and sliding velocities approached 90°.  相似文献   

12.
假设运动表面为光滑表面,静止表面上有一个垂直于卷吸速度方向的横向划痕,采用Ree-Eying本构关系求解表面单一粗糙对纯滑动点接触热薄膜润滑的影响,分析处于接触区中心的表面划痕在不同的乏油程度下对油膜压力、膜厚及温度的影响。结果表明:在乏油条件下,处于静止表面上接触中心的横向划痕前后的压力和温度都有尖锐的升高,且这种升高幅度随乏油程度的严重而增加;在乏油条件下,表面粗糙的存在更不利于润滑,易于造成润滑失效。  相似文献   

13.
变黏度静压滑动轴承高速时油膜动态润滑特性   总被引:1,自引:0,他引:1  
静压滑动轴承转台直径大(D=4.5 m),高转速运行时产生线速度值很大,其内部润滑油膜受压及剪切发热导致油膜变薄进而影响到机床加工精度和运行可靠性。针对新型Q1-205双矩形腔静压推力轴承,采用动网格技术探索变黏度条件静压轴承高速时的油膜动态润滑特性。建立该静压轴承的流量、承载力、油膜温升等理论模型,自定义用于控制边界层网格运动及变黏度的UDF程序,选取外载荷12 t,转速为80~200 r/min(线速度18~48 m/s)高速下的工况条件参数进行动态润滑特性数值模拟,并进行相同工况参数下的试验验证,揭示出高速时油膜厚度变化对油膜温度、油腔压力、封油边处流量的影响规律。研究发现,该型号轴承在承载12 t时,随着膜厚的减小,油膜剪切发热严重,温升加剧,且高速下受润滑油黏度变化影响造成压力损失严重,研究数据为工程上静压轴承可靠运行提供理论依据。  相似文献   

14.
A full fluid ball-in-socket elastohydrodynamic lubrication (EHL) analysis of an artificial hip joint made of a metallic femoral head and ultra-high molecular weight polyethylene (UHMWPE) acetabular cup was considered. Since artificial hips operate in a mixed lubrication mode, wear occurs and wear particles lead to reduced hip lifetimes. This study involves simulating these particles within the lubrication regime. Hip deformation was compared to models employing finite element analysis and the spherical fast-Fourier transform technique. Particle modeling results were compared to suspension modeling experiments by other researchers. Results show a strong influence of lubricant fluid velocity on that of the wear particles.  相似文献   

15.
王学锋  郭峰  杨沛然 《润滑与密封》2007,32(9):42-44,48
入口凹陷(inlet-dimple)是近年来弹性流体动力润滑(EHL)研究中出现的一类新油膜形状特征。使用Circular流变模型,利用数值分析,研究了滑滚比、载荷及卷吸速度等对凹陷的影响,并与部分已有实验结果进行了比较。初步结果显示,当滑动较大时,入口区油/固体界面处表观粘度剧烈下降,产生伪滑移,从而诱发了较大的压力梯度而形成入口凹陷。  相似文献   

16.
表面粗糙度对点接触弹流润滑性能的影响   总被引:1,自引:0,他引:1  
本文应用多重网格法对椭圆接触的部分膜弹流问题进行了完全数值求解,计算中采用了Patir-cheng的平均流量模型及Geenwood和Tripp的表面微峰弹性接触模型。在大量数值计算结果的基础上分析了表面粗糙度大小及纹理方向对点弹流的油膜厚度及微峰接触载荷的影响。  相似文献   

17.
基于三维间隙函数,利用有限差分法对轴承在偏斜状态下的润滑进行了数值研究,并以机床用对开式径向滑动轴承为例,计算出偏斜状态下的油膜压力分布。计算结果表明,随着倾斜角度的增大,油膜厚度h的变化受轴向尺寸y的影响程度逐渐增大,且轴承前端的压力峰值逐渐降低,并向轴承后端移动;油膜压力的峰值点沿轴向逐渐向θ=0(θ=2π)靠近。  相似文献   

18.
采用多光束干涉测量技术,在自制光弹流实验机上进行了椭圆接触弹流润滑油膜形状的实验测量,观察了椭圆接触区短轴与卷吸方向之间的夹角θ、速度、施加载荷等对油膜形状的影响。结果表明:夹角θ较小时,油膜厚度整体上更大,接触区较窄,入口区油膜更陡峭;低速时,夹角及载荷基本不影响膜厚;高速、轻载时,夹角θ对膜厚影响更显著;载荷及夹角越大,动压油膜越难建立。  相似文献   

19.
Reynolds equation is the pre-dominantly used PDE for modelling the fluid flow or more accurately the fluid pressure in an elastohydrodynamic lubrication (EHL) contact. The equation is derived by combining the two conservation equations of momentum and continuity into a single equation for the fluid pressure. The numerical approach for theoretical investigations performed on EHL contacts in this work is somewhat different. The modelling of the fluid flow is based on a computational fluid dynamic (CFD) technique. The fluid flow is simulated by aid of the equations of momentum and continuity in a more complete form and when the thermodynamics is incorporated, the equation of energy. The aim of the investigation was to examine whether the CFD technique could be used to handle thermal transient rough EHL line contacts. It is shown that commercial CFD software can be modified to meet such requirements. The influence of thermal effects on the flow under sliding motion was investigated. The non-Newtonian model used in this work is the Ree-Eyring model. It is shown that the choice of the Eyring stress in the model influences flow in the contacts. If the thermal properties of the surrounding solids differ, it has been shown experimentally and theoretically that a dimple or increased central film thickness may appear in the EHL contacts. This work shows that the governing mechanisms that result in the dimple are also present in thermal transient rough EHL line contacts.  相似文献   

20.
In recent years there have been substantial improvements in the capabilities of numerical modeling of elastohydrodynamic lubricant (EHL) films and it is now possible to analyze a very wide range of conditions rather than needing to rely on extrapolation using classical film thickness regression equations such as those of Dowson and Higginson. However, a new controversy has arisen concerning the film thickness-velocity dependence in EHL contacts at very low speeds and high loads, with some predictions showing a film thickness much less than that predicted by the classical equations. The present article applies the well-established limiting analysis, first presented by Grubin-Ertel, to the inlet of the EHL contact. It is shown that when the load is high and the speed is low (and the pressure gradient is very high in the inlet) an accurate resolution of the inlet pressure rise is critical for the determination of the film thickness. Discretization errors of this type might be responsible for discrepancies between the classical equations and some recently published numerical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号