共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of thermal behaviour of biomass and coal during co‐combustion using thermogravimetric analysis (TGA)
下载免费PDF全文

The thermal behaviour and kinetic analysis of biomass (cypress wood chips and macadamia nut shells) and Australian bituminous coal during combustion were studies using the thermogravimetric technique with four different heating rates under an air atmosphere. Each type of biomass was blended with coal at mass ratios (biomass:coal) of 95:5, 90:10, 85:15 and 80:20 to investigate the effect of coal as a supplementary fuel on thermal behaviour during the combustion process. Combustion of the individual samples and the blends took place in three steps comprising dehydration, devolatilisation and char oxidation. During co‐combustion, the thermal decomposition behaviour of the blends followed that of the weighted average of the individual samples in the blends. In kinetic analysis, thermal decomposition of biomass and coal appeared to take place independently, and thus, the activation energy of the blends can be calculated from that of the two components. No evidence for any significant synergetic effects or thermal interaction was found between either type of biomass and the coal during co‐combustion based on the lack of deviation from expected behaviour of the blends. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Combustion characteristics of Turkish lignites at oxygen-enriched and oxy-fuel combustion conditions
Combustion and oxy-fuel combustion characteristics of two Turkish lignites (Orhaneli and Soma) were investigated by Thermogravimetric Analysis (TGA) method. Experiments were carried out under oxygen-enriched air and oxy-fuel combustion conditions with 21, 30, 40% oxygen concentrations. Three heating rates of 5, 10, and 20 °C/min were considered and the isoconversional kinetic methods of FWO, KAS, and Friedman were employed to estimate activation energies. The uncertainty assessment in obtaining the activation energy values was also considered. The obtained results indicated that the combustion of volatiles at both air and oxy-fuel conditions were approximately identical. However, at air combustion conditions, the decomposition of CaCO3 took place at temperatures above 700 °C. This decomposition process was independent of the oxygen concentration and took place when the temperature reached to a certain threshold. The decomposition of CaCO3 did not accomplish in oxy-fuel conditions as far as the temperature was higher than 900 °C. Combustion in oxy-fuel conditions had higher activation energy values comparing to conventional combustion atmosphere. The activation energy values were approximately unchanged at the start of combustion regardless of oxygen concentration or combustion atmosphere at about 165 kJ/mol and 150 kJ/mol for Orhaneli and Soma lignites, respectively. The apparent activation energies were higher at elevated oxygen concentrations. The uncertainties values related to FWO method were lower than KAS and Friedman methods. The calculated average uncertainty values were found to be at the range of 5–15% for most of the cases. 相似文献
3.
To facilitate the large-scale utilization of high-alkali and -alkaline earth metals (AAEMs) coals in power generation, the ash deposition behaviors of a typical Zhundong coal in oxy-fuel combustion were experimentally investigated using a drop tube furnace. A wall-temperature-controlled ash deposition probe by which the bulk gas temperature could be measured simultaneously was designed and employed in the experiments. The deposition tendencies, ash morphologies, chemical compositions of deposited ash particles were studied respectively under various oxygen concentrations, bulk gas temperatures, probe surface temperatures and probe exposure times. The experimental results revealed that the oxygen concentration had a significant influence on the deposition behavior during oxy-fuel combustion of high-alkali coal. Compared with air case, more fine ash particles were generated during the combustion of Zhundong coal in 21% O2/79% CO2 atmosphere but the deposition tendency was weaker. However, a higher oxygen concentration could aggravate the tendency of ash deposition. The high contents of iron (Fe), calcium (Ca), sulfur (S), and sodium (Na) in Zhundong coal could result in the generations of low-melting point compounds. Calcium in flue gas existed as CaO and was captured prior to SO3 by the probe surface during the ash deposition process. At the initial 30 min of the ash deposition process, the dark spherical fine ash particles rich in Fe, Na, oxygen (O), and S were largely produced, while in the range of 60–90 min the light spherical fine ash particles with high contents of Ca, barium (Ba), O, and S were generated on the other hand. The deposition mechanisms at different stages were different and the melted CaO (BaO)/CaSO4 (BaSO4) would give rise to a fast growth rate of ash deposit. 相似文献
4.
This study presents the concept of a cyclone furnace for coal dust oxy-fuel combustion and gasification.The results of numerical calculations for the combustion and gasification processes were also presented. 相似文献
5.
秸秆类生物质燃烧动力学特性实验研究 总被引:4,自引:0,他引:4
生物质能的利用越来越受到重视。直接燃烧技术由于其操作简单、取材方便、成本适宜等特点是一种符合我国国情的生物质能利用方式。采用热重分析的研究方法,对水稻秸秆、玉米秸秆和玉米芯三种秸秆类生物质的燃烧动力学特性进行了实验,研究了不同升温速率、氧浓度对不同种类的秸秆生物质燃料燃烧动力学特性的影响,并对着火温度、燃烧稳定性、挥发分析出特性、燃烧特性指数等相关特性参数进行定量分析,为设计秸秆工业锅炉燃烧设备,合理选择生物质种类、优化燃烧、提高锅炉效率提供了理论支撑。 相似文献
6.
7.
The conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle of 7 mm in diameter were investigated in a laboratory-scale flow tube reactor under oxy-fuel fluidized bed (FB) conditions. The method of isothermal thermo-gravimetric analysis (TGA) combing with the coal properties was proposed to distinguish the devolatilization and char combustion stages of coal combustion. The results show that the char combustion stage plays a dominant role in NO and N2O emissions in oxy-fuel FB combustion. Temperature changes the trade-off between NO and N2O during the two stages. With increasing temperature, the conversion ratios of fuel-N to NO during the two stages increase, and the opposite tendencies are observed for N2O. CO2 inhibits the fuel-N conversions to NO during the two stages but promotes those to N2O. Compared with air combustion, the conversion ratios of fuel-N to NO during the two stages are lower in 21%O2/79%CO2, and those to N2O are higher. At <O2> = 21–50% by volume, the conversion ratios of fuel-N to NO during the two stages reach the maximum values at <O2> = 30% by volume, and those to N2O decrease with increasing O2 concentration. H2O suppresses the fuel-N conversions to NO and N2O during the two stages. A higher coal rank has higher total conversion ratios of fuel-N to NO and N2O. Fuel-N, volatile matter, and fixed carbon contents are the important factors on fuel-N conversions to NO and N2O during the two stages. The results benefit the understanding of NO and N2O emission mechanisms during oxy-fuel FB combustion of coal. 相似文献
8.
Natália Ribeiro Galina Carlos M. Romero Luna Gretta L.A.F. Arce Ivonete Ávila 《能源学会志》2019,92(3):741-754
Biomass and coal have different physicochemical properties and thermal behavior. During the co-combustion of coal-biomass mixtures, their thermal behavior varies according to the percentage of each fuel in the mixture. Thereby, this research aims to characterize the thermal behavior of mixtures of coal, sugarcane bagasse, and biomass sorghum bagasse as biomass in simulated combustion (O2/N2) and oxy-fuel combustion (O2/CO2) environments. Experiments have been performed in duplicate on a thermogravimetric analyzer at heating rate of 10 °C/min. A uniform granulometry was considered for all materials (63 μm) in order to ensure a homogeneous mixture. Four biomass percentages in the mixture (10, 25, 50 and 75%) have been studied. Based on thermogravimetric (TG) and thermogravimetric (DTG) analyses, parameters such as combustion index, synergism, and activation energy have been determined, as well as the combustion environment influence on these parameters. The results indicate that, although sugarcane bagasse has the lowest activation energy, the thermal behavior of both types of biomass is similar. Thus, biomass sorghum bagasse can be used as an alternative biomass to supply the power required during sugarcane off-season. For both mixtures, optimal results were obtained at 25% of biomass. By analyzing the environment influence on combustion behavior, the results indicate that when N2 is replaced with CO2, it is observed an increase in reaction reactivity, a higher oxidation rate of materials and an improvement in evaluated parameters. 相似文献
9.
Sevgi Polat Ayşe Eren Pütün 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(20):3073-3080
As a continuation of the previous study on the thermal degradation behavior of tobacco stem, this work is focused on the kinetics of pyrolytic decomposition. Thermogravimetric analysis of tobacco stem samples was conducted under nitrogen atmosphere at different heating rates of 5, 10, 15, and 20°C/min at a temperature range of 25–1,000°C. The kinetic parameters, such as activation energy, pre-exponential factor, and reaction order, were determined by applying the Coats–Redfern method for the main pyrolysis occurred in the second zone by means of the decomposition of hemicellulose, cellulose, and lignin at a temperature range 180–540°C. In addition, the activation energy was calculated using various degradation models, including Kissinger, Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS). The average activation energy of tobacco stem was calculated to be 150.40, 230.76, 216.97, and 218.56 kJ/mol by the Kissinger, FR, FWO, and KAS models, respectively. 相似文献
10.
关于影响煤燃烧固硫反应的主要因素及其机理的研究进展 总被引:1,自引:0,他引:1
燃烧过程中的脱硫是锅炉脱硫工艺的重要组成部分之一 ,已被广泛应用于各种流化床锅炉和煤粉炉中。为开发低成本、高效率的燃煤固硫技术 ,世界各国学者进行了大量的实验和机理性的研究。本文对这方面的研究进展做了总体回顾 ,并在前人研究的基础上提出了关于燃烧过程中固硫化学反应机理研究的发展趋势。 相似文献
11.
Jongsup Hong Gunaranjan Chaudhry J.G. Brisson Randall Field Marco Gazzino Ahmed F. Ghoniem 《Energy》2009,34(9):1332-1340
Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SOx, de-NOx, and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case. 相似文献
12.
13.
The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2-79%CO2, 30%O2-70% O2 and 35%O2-65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2-79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. 相似文献
14.
15.
Rohan Stanger Terry Wall 《Progress in Energy and Combustion Science》2011,37(1):69-88
The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration - the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO2 compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO3 conversion and limestone addition. 相似文献
16.
Baojun Yi Qiaoxia Yuan 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2018,40(13):1565-1572
The impacts of O2 and H2O on the combustion characteristics of pulverized coal in O2/CO2/H2O atmosphere were studied. The gasification reaction ratio was calculated from the components of flue gas. The competition exists between C-CO2 and C-H2O reactions under rich CO2 atmosphere. At various H2O concentrations, the differences were found in generation amounts of CO and H2 in flue gas. At O2 concentrations <10%, C-CO2 reaction decreased while C-H2O reaction increased with increasing H2O concentration; while at O2 concentration >30%, H2O showed no obvious specific patterns of effects. The gasification ratio was reduced as coal ranks increase. 相似文献
17.
本文对无烟煤、烟煤、褐煤与泥煤绝热燃烧过程的(火用)损进行了计算与分析,结果表明:提高空气预热温度,降低空气消耗系数,采用富氧燃烧可以降低燃烧过程(火用)损失,而以提高助燃空气的预热温度效果最为显著。因此,在煤的燃烧过程中,应尽可能地把助燃空气预热到较高温度;在空气不预热时,应尽可能在低空气消耗系数下完全燃烧。 相似文献
18.
19.
Li Wang Abolghasem Shahbazi 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(15):2250-2257
The thermal analysis and kinetics of bio-oils derived from swine manure/crude glycerol co-liquefaction were studied by thermogravimetric analysis (TGA) in the air. It was found that the combustion processes of bio-oils can be divided into three stages, with most of the materials decomposing between 330 and 370°C. In kinetic calculations, oxidation of the bio-oils was determined using the Coats–Redfern method, considering that bio-oil combustion occurs in three consecutive steps. Four models including more than 12 alpha functions were tested to fit the study’s experimental results. The calculation shows that the diffusion models are the best fit for describing the bio-oil combustion process in the air. 相似文献
20.
Nitrogen oxides (NOx) as the principal air pollutants are mainly from the combustion of fossil fuels. Oxy-fuel combustion is a promising clean coal technology, by which carbon dioxide (CO2) can be captured in large-scale and NOx emission can be reduced significantly. The formation of nitrogen dioxide (NO2) in oxy-fuel combustion exceeds that under traditional air condition. However, the specific studies on NO2 chemistry under oxy-fuel condition are still insufficient and the functional mechanisms of minerals and combustion atmosphere on NO2 reduction have yet to be fully understood. The objective of present study is to experimentally clarify the effects of combustion atmosphere and coal char on NO2 reduction in oxy-fuel combustion using a fixed-bed reactor. Experimental results showed that the decomposition of NO2 had a strong temperature dependence and the NO2 reduction rate showed a positive variation with temperature. The strength of catalytic activity in NO2 reduction to nitric oxide (NO) was Fe2O3 > MgO > CaO > Al2O3 > Na2CO3 > K2CO3 > SiO2. In addition, the increased concentrations of carbon monoxide (CO) and CO2 could promote the reduction of NO2, while the low content of CO2 only established a slight impact on NO2 reduction. However, the increase of oxygen (O2) concentration displayed an inhibition effect on NO2 reduction to a certain extent. The variation of atmosphere in oxy-fuel combustion generated a substantial influence on the creation and reduction of NO2. The char prepared in lower temperature exhibited a higher promotion effect on the consumption of NO2. Higher contents of fixed carbon and basic oxides had more obvious stimulation effects on NO2 reduction. Fixed carbon had a superior activity in NO2 reduction than ash. The kinetic analysis indicated that high content of CO and the presence of char could reduce the apparent activation energy of NO2 reduction. The present study can be helpful to improve the understanding of NO2 chemistry in oxy-fuel combustion. 相似文献