首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Local and average heat transfer by forced convection from a circular cylinder is studied for Reynolds number from 2 × 103 to 9 × 104 and Prandtl number from 0.7 to 176. For subcritical flow, the local heat transfer measurement indicates three regions of flow around the cylinder: laminar boundary layer region, reattachment of shear layer region and periodic vortex flow region. The average heat transfer in each region is calculated and correlated with the Reynolds number and the Prandtl number. The Nusselt number in each region strongly depends on the Reynolds number and the Prandtl number with different power indices. An empirical correlation for predicting the overall heat transfer from the cylinder is developed from the contributions of heat transfer in these three regions.  相似文献   

2.
Free-stream flow and forced convection heat transfer across a rotating cylinder, dissipating uniform heat flux, are investigated numerically for Reynolds numbers of 20–160 and a Prandtl number of 0.7. The non-dimensional rotational velocity (α) is varied from 0 to 6. Finite volume based transient heatline formulation is proposed. For Re = 100, the reasons for the onset/suppression of vortex shedding at a critical rotational velocity is investigated using vorticity dynamics. At higher rotational velocity, the Nusselt number is almost independent of Reynolds number and thermal boundary conditions. Finally, a heat transfer correlation is proposed in the 2D laminar flow regime. Cylinder rotation is an efficient Nusselt number reduction or cylinder-surface temperature enhancement technique.  相似文献   

3.
The flow structure and heat transfer characteristics of an isolated square cylinder in cross flow are investigated numerically for both steady and unsteady periodic laminar flow in the two-dimensional regime, for Reynolds numbers of 1 to 160 and a Prandtl number of 0.7. The effect of vortex shedding on the isotherm patterns and heat transfer from the cylinder is discussed. Heat transfer correlations between Nusselt number and Reynolds number are presented for uniform heat flux and constant cylinder temperature boundary conditions.  相似文献   

4.
In this paper, a viscous fluid flowing past a rotating isothermal cylinder with heat transfer is studied and simulated numerically by the lattice Boltzmann method (LBM). A numerical strategy for dealing with curved and moving boundaries of second-order accuracy for both velocity and temperature fields is proposed and presented. The numerical strategy and method are validated by comparing the present numerical results of flow without heat transfer with those of available previous theoretical, experimental and numerical studies, showing good agreements. On this basis, the convective heat transfer performance in such rotational boundary environments is further studied and validated; the numerical results are reported in the first time. The effects of the peripheral-to-translating-speed ratio, Reynolds number and Prandtl number on flow and heat transfer are discussed in details.  相似文献   

5.
This article presents a numerical investigation of convective heat transfer from a rotating cylinder with cross-flow oscillation. A finite element analysis using Characteristic Based Split method (CBS) is developed to solve governing equations involving continuity, Navier–Stokes, and energy equations. Dynamic unstructured triangular grid is used employing improved lineal and torsional spring analogy which is coupled with the solver by the Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the numerical code accuracy, simulations are conducted to study convective heat transfer past a rotating cylinder with cross-flow oscillation at Reynolds numbers of 50, 100, and 200. Different rotational speeds of the cylinder normalized by free stream velocity, in the range of 0–2.5 are considered at various oscillating amplitudes and frequencies and three different Prandtl numbers of 0.7, 6, and 20. Effects of oscillation and rotation of cylinder on the temperature and flow field, vortex lock-on, mean Nusselt number, and the pattern of vortex shedding are investigated in detail considering iso-temperature and iso-flux boundary conditions on the cylinder surface. It is found that similar to the fixed cylinder, beyond a critical rotating speed, vortex shedding is mainly suppressed. Also by increasing the non-dimensional rotational speed of the cylinder, both the Nusselt number and the drag coefficient decrease rapidly. However, in vortex lock-on region, the Nusselt number increases in a large amount.  相似文献   

6.
This work examines the natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross section in a Newtonian fluid with temperature dependent internal heat generation. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying cubic spline collocation method. Results for the local Nusselt number and the local skin-friction coefficient are presented as functions of eccentric angle for various values of heat generation parameters, Prandtl numbers and aspect ratios. Results show that both the heat transfer rate and skin friction of the elliptical cylinder with slender orientation are higher than the elliptical cylinder with blunt orientation. Moreover, an increase in the heat generation parameter for natural convection flow over an isothermal horizontal elliptic cylinder leads to a decrease in the heat transfer rate from the elliptical cylinder and an increase in the skin friction of the elliptical cylinder.  相似文献   

7.
A two–dimensional numerical simulation is performed following a finite volume approach to analyze the forced convection heat transfer for the hydromagnetic flow around a circular cylinder at low Reynolds numbers. The cylinder is placed within a rectangular channel subjected to externally applied magnetic fields and acted upon by the magnetohydrodynamic (MHD) flow of a viscous incompressible and electrically conductive fluid. The magnetic field is applied either along the streamwise or transverse directions. The simulation is carried out for the range of Reynolds number 10 ≤ Re ≤ 80 with Hartmann number 0 ≤ Ha ≤ 10 and for different Prandtl numbers, Pr = 0.02 (liquid metal), 0.71 (air), and 7 (water) for a blockage ratio β = 0.25. The flow is steady for the above range of conditions. Apart from the channel wall, the magnetic field provides additional stability to the flow as a result of which the recirculation region behind the obstacle reduces with increasing magnetic field strength for a particular Reynolds number. The rate of heat transfer is found almost invariant at low Re whereas it increases slightly for higher Re with the applied magnetic field. The heat transfer increases as usual with the Reynolds number for all Hartmann numbers. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21025  相似文献   

8.
In this study convective heat transfer from a rotating cylinder with inline oscillation is studied using a finite element method based on the Characteristic Based Split method (CBS) to solve governing equations consisting of continuity, full Navier–Stokes, and energy equations. Employing the Arbitrary Lagrangian-Eulerian (ALE) formulation, the dynamic unstructured triangular grid used here is accompanied by lineal and torsional spring analogy to consider large boundary movements. Simulations are conducted to study convective heat transfer past a rotating cylinder with inline oscillation at Reynolds numbers of 100, 200 and 300. Different rotational speeds of the cylinder in the range of 0–2.5 are considered at various oscillating amplitudes and frequencies with three different Prandtl numbers of 0.7, 6 and 20. Effects of oscillation and rotation of cylinder on the temperature and flow field, vortex lock-on, mean Nusselt number, and the pattern of vortex shedding are investigated in detail at constant temperature boundary condition on the cylinder surface. It is found that similar to the fixed cylinder, beyond a critical rotating speed, the vortex shedding is strongly suppressed. Furthermore, as the rotational speed of the cylinder increases, both the Nusselt number and the drag coefficient decrease rapidly. In the vortex lock-on region, the Nusselt number increases rapidly.  相似文献   

9.
Shuang-Ying Wu  You-Rong Li  Yan Chen  Lan Xiao 《Energy》2007,32(12):2385-2395
The exergy transfer characteristics of fluid flow and heat transfer inside a circular duct under fully developed laminar and turbulent forced convection are presented. Temperature is kept constant at the duct wall. The exergy transfer Nusselt number is put forward and the analytical expressions for exergy transfer Nusselt number are obtained as functions of heat transfer Nusselt number, Reynolds number, Prandtl number, etc. The variations of the local and mean convective exergy transfer coefficient, non-dimensional exergy flux, exergy transfer rate, etc. with operating parameters are presented graphically. By reference to a smooth duct and taking air as working fluid, a numerical analysis of the influence of the Reynolds number and non-dimensional cross-sectional position on exergy transfer characteristics has been conducted. The results show that the process parameters and configuration in the fluid flow and heat transfer inside a duct should be properly selected so that the forced convection process could have the best exergy utilization. In addition, the results corresponding to the exergy transfer and energy transfer are compared.  相似文献   

10.
Flow over two isothermal offset square cylinders in a confined channel is simulated for different Reynolds numbers to disclose the forced convection heat transfer from the heated square cylinders to the ambient fluid. The spacing between the cylinder in the normal direction and the blockage ratio are fixed. The channel walls are covered by solid walls of thickness equal to the size of the cylinder and conjugate heat transfer is considered by including these walls. Heat transfer from the cylinders to the ambient fluid as well as that conducted within the solid wall through the conjugate interface boundary are investigated in connection with Reynolds number and are reported for both steady and periodic flows. Simulation is carried out for Reynolds number varying from 10 to 100 with air as the fluid. The onset of the vortex begins when the Reynolds number equals 48. The conjugate interface temperature declines when the Reynolds number grows. The isotherms in the solid wall show two dimensionality near the cylinder region.  相似文献   

11.
Local heat transfer by forced convection from a circular cylinder in crossflow is investigated for Reynolds number from 2 × 103 to 9 × 104 and Prandtl number from 7 to 176. The working fluids are water and mixtures of ethylene glycol and water. The cylinder is uniformly heated by passing a direct electric current through a thin surface heater. The influence of Reynolds number and Prandtl number on the distributions of local Nusselt number around a circular cylinder in crossflow is described.  相似文献   

12.
The present study investigates numerically the simultaneously developing unsteady laminar fluid flow and heat transfer inside a two dimensional wavy microchannel caused by a sinusoidal varying velocity component at an inlet. The flow was both thermally and hydro dynamically developing while the channel walls were kept at a uniform temperature. The simulation was performed in the laminar regime for Prandtl number 7(water) and Reynolds number ranging from 0.1 to 100. A Wavy microchannel having non-dimensional hydraulic diameter 1 with varying pulsating amplitude and frequency represented by the Strouhal number was designed for the given Reynolds number range. Based on the comparison with steady flow in a wavy channel it was found that imposed sinusoidal velocity at the inlet can provide improved heat transfer performance at different amplitudes (0.2, 0.5, 0.8) and frequencies (1, 5, 10) while keeping the pressure drop within acceptable limits.  相似文献   

13.
A numerical study has been carried out to analyze the unsteady three-dimensional flow and heat transfer in a parallel-plate channel heat exchanger with in-line arrays of periodically mounted rectangular cylinders (pins) at various Reynolds number and geometrical configurations. The three-dimensional unsteady Navier-Stokes and energy equations are solved using higher order temporal and spatial discretizations. The simulations have been carried out for a range of Reynolds number based on cylinder width (180-600) and a Prandtl number of 6.99 (corresponding to water). Conjugate heat transfer calculations have been employed to account for the conduction in the solid cylinder and convection in the fluid. The thermal performance factor (TPF) increases significantly when the flow becomes unsteady. The choice of aspect ratio of the cylinders is judged by their relative increase in friction factor and heat transfer at transitional Reynolds number. The TPF is found to increase with the increase in pitch of the cylinders. The increase in channel height enhances the TPF though the heat transfer decreases at higher channel height.  相似文献   

14.
This article discusses the results obtained through a two‐dimensional numerical simulation following a finite volume approach on the forced convection heat transfer for the hydromagnetic flow around a square cylinder at low Reynolds and Hartmann numbers. The magnetohydrodynamic (MHD) flow of a viscous incompressible and electrically conducting fluid is assumed to take place in a rectangular channel subjected to externally imposed magnetic fields and the cylinder is fixed within the channel. The magnetic fields may be applied either along the streamwise or transverse directions. Simulations are performed for the range of kinetic Reynolds number 10 ≤ Re ≤ 60 with Hartmann number 0 ≤ Ha ≤ 15 and for different thermal Prandtl numbers, Pr = 0.02 (liquid metal), 0.71 (air), and 7 (water) for a blockage ratio β = 0.25. A steady flow can be expected for the above range of conditions. Besides the channel wall, the magnetic field imparts additional stability to the flow as a consequence of which the recirculation region behind the obstacle reduces with increasing magnetic field strength for a particular Re. The critical Hartmann numbers for the complete suppression of flow separation in the case of a transversely applied magnetic field are computed. The rate of heat transfer is found almost invariant at low Re whereas it increases moderately for higher Re with the applied magnetic field. The heat transfer increases in general with the Reynolds number for all Hartmann numbers. Finally, the influence of obstacle shape on the thermohydrodynamic quantities is noted. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 459–475, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21091  相似文献   

15.
Forced convection heat transfer characteristics of a long, heated square cylinder blocking the flow of a power-law fluid in a channel is numerically investigated in this study. In particular, the role of the power-law index n, Reynolds number Re, Prandtl number Pr, and blockage ratio β(=B/H) on the rate of heat transfer from a square cylinder in a channel has been studied over the following ranges of conditions: 0.5 ≤ n ≤ 1.8, 60 ≤ Re ≤ 160, β = 1/4, 1/2, and 0.7 ≤ Pr ≤ 50. A semi-explicit finite-volume method is used on a nonuniform collocated grid arrangement. The third-order QUICK and the second-order central difference schemes are used to discretize the convective and diffusive terms, respectively, in the momentum and energy equations. Irrespective of the type of behavior of fluid (different values of n), the average Nusselt number increases as the blockage ratio increases. Similar to the unconfined flow configuration, the average Nusselt number increases monotonically with Reynolds and Prandtl numbers for both values of the blockage ratio and for all values of power-law index considered here. Further insights into the heat transfer phenomenon are provided by presenting isotherm contours in the vicinity of the cylinder for a range of values of the Reynolds number, Prandtl number, and power-law index for the two values of β considered in this work.  相似文献   

16.
In the current work, a numerical study of the flow characteristics on combined magnetoconvection in a lid-driven square enclosure, differentially heated, is carried out. This problem is solved by using finite element method of the partial differential equations, which are the heat transfer and stream function in Cartesian coordinates. The tests are performed for different solid–fluid thermal conductivity ratio, cylinder location and Richardson number while the Prandtl number, Reynolds number, magnetic and Joule heating parameters are kept constant. One geometrical configuration is used namely two undulations. The outcome obtained shows that the heat conducting inner square cylinder affects the flow and the heat transfer rate in the enclosure. The trend of the local heat transfer is found to follow a wavy pattern. Results are presented in terms of streamlines, isotherms, average Nusselt number at the heated wavy wall, average temperature of the fluid in the enclosure and dimensionless temperature at the cylinder center for different combinations of the governing parameters.  相似文献   

17.
Heat transfer in the turbulent flow of fluid in a pipe is analyzed. Nusselt number as a function of the Reynolds and Prandtl number is given. Power-type correlations were proposed within a wide range of Reynolds and Prandtl number. Relationships for the Nusselt number compare well with experimental data. The paper presents three power-type correlations of a simple form, which are valid for Reynolds numbers range from 3·103 ≤ Re ≤ 106, and for three different ranges of Prandtl number: 0.1 ≤ Pr ≤ 1.0, 1.0 Pr ≤ 3.0, and 3.0 Pr ≤ 103. Heat transfer correlations developed in the paper were compared with experimental results available in the literature. The comparisons performed in the paper confirm the good accuracy of the proposed correlations. They are also much simpler compared with the relationship of Gnielinski, which is also widely used in the heat transfer calculations.  相似文献   

18.
The examination of exergy transfer characteristics caused by forced convective heat transfer through a duct with constant wall heat flux for thermally and hydrodynamic fully developed laminar and turbulent flows has been presented. The exergy transfer Nusselt number is put forward and the dependence relationships of the exergy transfer Nusselt number on the heat transfer Nusselt number, Reynolds number and Prandtl number are obtained. Expressions involving relevant variables for the local and mean convective exergy transfer coefficient, non-dimensional exergy flux and exergy transfer rate, etc. have been derived. By reference to a smooth duct, the numerical results of exergy transfer characteristics for fluids with different Prandtl number are obtained and the effect of the Reynolds number and non-dimensional cross-sectional position on exergy transfer characteristics is analyzed. In addition, the results corresponding to the exergy transfer and energy transfer are compared.  相似文献   

19.
Fluid flow and heat transfer in a rotating cylindrical container with a counterrotating disk at the fluid surface are numerically investigated. The effects of disk rotation and of Prandtl numbers on the fluid flow and heat transfer in the container are discussed. Flow and temperature fields are obtained for various rotational Reynolds numbers of the disk and for Prandtl numbers of the fluid. Nusselt numbers on the walls are calculated for the temperature fields and are compared with available experimental data. © 1999 Scripta Technica, Heat Trans Asian Res, 28(3): 172–182, 1999  相似文献   

20.
Forced-convection heat transfer to power-law fluids from a heated square cylinder has been investigated numerically for the range of conditions 1 ≤ Re ≤ 45, 0.5 ≤ n ≤ 2.0 and 1 ≤ Pr ≤ 100 (the maximum Peclet number being 4,000). In this range of Reynolds number, the flow is known to be steady and two-dimensional. The variation of the local Nusselt number on the individual surfaces of the square cylinder and the representative isotherm plots, for both the constant-temperature and uniform-heat-flux boundary conditions prescribed on the surface of the square obstacle, are presented to elucidate the role of Reynolds number, Prandtl number, and power-law index on the heat transfer characteristics. Using the present numerical data, appropriate predictive correlations are obtained for estimating the value of the mean heat transfer coefficient in a new application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号