首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
The growth of large diameter, semi-insulating GaAs crystals of improved purity by Liquid Encapsulated Czochralski (LEC) pulling from pyrolytic boron nitride (PBN) crucibles and characterization of this material for direct ion implantation technology, is described. Three-inch diameter, 〈100〉-oriented GaAs crystals have been grown in a high pressure Melbourn crystal puller using 3 kg starting charges synthesized in-situ from 6/9s purity elemental gallium and arsenic. Undoped and Cr-doped LEC GaAs crystals pulled from PBN crucibles exhibit bulk resistivities in the 107 and 108 Ω cm range, respectively. High sensitivity secondary ion mass spectrometry (SIMS) demonstrates that GaAs crystals grown from PBN crucibles contain residual silicon concentrations in the mid 1014 cm?3 range, compared to concentrations up to the 1016 cm?3 range for growths in fused silica containers. The residual chromium content in undoped LEC grown GaAs crystals is below the SIMS detection limit for Cr (4 × 1014 cm?3).The achievement of direct ion implanted channel layers of near-theoretical mobilities is further evidence of the improved purity of undoped, semi-insulating GaAs prepared by LEC/PBN crucible techniques. Direct implant FET channels with (1–1.5) × 1017 cm?3 peak donor concentrations exhibit channel mobilities of 4,800–5,000 cm2/V sec in undoped, semi-insulating GaAs substrates, compared with mobilities ranging from 3,700 to 4,500 cm2/V sec for various Cr-doped GaAs substrates. The concentration of compensating acceptor impurities in semi-insulating GaAs/PBN substrates is estimated to be 1 × 1016 cm?3 or less, and permits the implantation of 2 × 1016 cm?3 channels which exhibit mobilities of 5,700 and 12,000 cm2/V sec at 298K and 77K, respectively.Discrete power FET's which exhibit 0.7 watts/mm output and 8 dB associated gain at 8 GHz have been fabricated using these directly implanted semi-insulating GaAs substrates.  相似文献   

2.
A monolithic compound semiconductor phototransducer optimized for narrow‐band light sources was designed for achieving conversion efficiencies exceeding 50%. The III‐V heterostructure was grown by metal‐organic chemical vapor deposition, based on the vertical stacking of 5 partially absorbing GaAs n/p junctions connected in series with tunnel junctions. The thicknesses of the p‐type base layers of the diodes were engineered for optimal absorption and current matching for an optical input with wavelengths centered near 830 nm. Devices with active areas of ~3.4 mm2 were fabricated and tested with different emitter gridline spacings. The open circuit voltage (Voc) of the electrical output is five times or more than that of a single GaAs n/p junction under similar illumination. The device architecture allows for improved Voc generation in the individual base segments because of efficient carrier extraction while simultaneously maintaining a complete absorption of the input photons with no needs for complicated fabrication processes or reflecting layers. With illumination powers in the range of a few 100 mW, the measured fill factor (FF) varied between 88 and 89%, and the Voc reached over 5.75 V. The data also demonstrated that a proper combination of highly doped emitter and window layers without gridlines is adequate for sustaining such FF values for optical input powers of several hundred milliwatts. As the optical input power is further increased and approaches 2 W (intensities ~58 W/cm2), the multiple tunnel junctions sequentially exceed their peak current densities in the case for which typical (n++)GaInP/ (p++)AlGaAs concentrated photovoltaic tunnel junctions are used. Lower bandgap tunnel junctions designed with improved peak current densities result in phototransducer devices having high FF and conversion efficiencies for up to 5 W optical input powers (intensities ~144 W/cm2). Measurements at different temperatures revealed a Voc reduction of −6 mV/°C at ~59 W/cm2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 1019 cm−3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 × 1011 cm−2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy)xOy film is 35, and the off-state leakage current at −1 V bias and 2.8 nm equivalent oxide thickness is 5 × 10−7 A/cm2. We obtain a memory window of about 0.95 V with ±6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.  相似文献   

4.
We studied the effect of dislocations on the 1/f noise current of long wavelength infrared photodiodes fabricated with HgCdTe layers grown on GaAs by metalorganic vapor phase epitaxy. N-on-p junctions were formed by boron ion implantation into Hg-vacancy doped epilayers. The 1/f noise dominated from 0.5 to 100 Hz, and shot noise caused by photocurrent (√2eIp) dominated at higher frequencies. We observed two types of 1/f noise. One is caused by the leakage current generated at dislocations, and the other is induced by the photocurrent. The 1/f noise current increased with the photon flux in the low-etch pit density (EPD) range independently of EPD. It increased with EPD in the high-EPD range. The 1/f noise current measured at zero field of view increased with EPD. This suggests that the 1/f noise generated by the photocurrent dominated in the low-EPD range, and that the 1/f noise current caused by dislocations dominated in the high-EPD range. In order to obtain a thermal image of a room-temperature object, the 1/f noise current induced by background photon flux is as high as that caused by dislocations of more than 107 cm−2. Therefore, the 1/f noise current induced by the photocurrent is dominant in photodiodes fabricated with HgCdTe layers on GaAs, since the EPD is less than 2 x 106 cm−2. We expect the detectivity to be as high as with LPE-layers. We fabricated 64 x 64 photodiode arrays, and obtained a thermal image.  相似文献   

5.
The fabrication and characteristics of planar junctions in GaAs formed by Be ion implantation are discussed. The critical processing step is shown to be the use of a carefully deposited oxygen-free Si/SUB 3/N/SUB 4/ encapsulation during post-implantation annealing. Forward and reverse characteristics are presented for Be-implanted junctions formed by encapsulating with SiO/SUB 2/, Si/SUB x/O/SUB y/N/SUB z/, or Si/SUB 3/N/SUB 4/ layers prior to annealing at 900/spl deg/C. Junctions which exhibit leakage current density of ~2/spl times/10/SUP -7/ A/cm/SUP 2/ at 80 V reverse bias and breakdown voltage >200 V have been fabricated using RF-plasma deposited Si/SUB 3/N/SUB 4/ layers as the encapsulant.  相似文献   

6.
The lattice and grain boundary diffusion coefficients of As in 260 nm-thick Ni2Si films were measured. The Ni2Si layers were prepared via the reaction between a Si layer deposited by low pressure chemical vapor deposition and a Ni layer deposited by magnetron sputtering on a Si substrate covered with a SiO2 film. As was implanted in the silicide. Its concentration profiles were measured using secondary ion mass spectroscopy before and after annealing (550-700 °C). 2D finite element diffusion simulations taking into account lattice diffusion and grain boundary (GB) diffusion were performed based on the microstructure of the samples. They were found to fit accurately the measured profiles and allowed to measure the diffusion coefficients for each temperature. Lattice diffusion is characterized by a pre-exponential factor D0v ∼ 1.5 × 10−1 cm2 s−1 and an activation energy Qv ∼ 2.72 eV. In the case of GB diffusion P0 = sδD0gb = 9.0 × 10−3 cm3 s−1 and the activation energy was found to be higher than for lattice diffusion with Qgb ∼ 3.07 eV. Existing data concerning diffusion in silicides and other materials is used to discuss these results. The diffusion of As in Ni2Si could be reduced due to impurity segregation in GBs.  相似文献   

7.
In this paper, we report the study of the electrical characteristics of GaN and AlGaN vertical p-i-n junctions and Schottky rectifiers grown on both sapphire and SiC substrates by metal-organic chemical-vapor deposition. For GaN p-i-n rectifiers grown on SiC with a relatively thin “i” region of 2 μm, a breakdown voltage over 400 V, and forward voltage as low as 4.5 V at 100 A/cm2 are exhibited for a 60-μm-diameter device. A GaN Schottky diode with a 2-μm-thick undoped layer exhibits a blocking voltage in excess of ∼230 V at a reverse-leakage current density below 1 mA/cm2, and a forward-voltage drop of 3.5 V at a current density of 100 A/cm2. It has been found that with the same device structure and process approach, the leakage current of a device grown on a SiC substrate is much lower than a device grown on a sapphire substrate. The use of Mg ion implantation for p-guard rings as planar-edge terminations in mesageometry GaN Schottky rectifiers has also been studied.  相似文献   

8.
We have investigated the influence of assisted ion beam bombardment on structure and electrical properties of HfSiO dielectrics deposited on Si (1 0 0) substrate by dual-ion beam sputtering deposition (DIBSD). The X-ray photoelectron spectroscopy (XPS) analysis indicates that assisted ion beam bombardment could suppress the formation of Si clusters and partial SiO bonds. The excellent electrical properties with maximum dielectric constant (18.6) and the smaller oxide-charge density (7.2 × 1011 cm−2) and leakage current (2.8 × 10−7 A/cm2 at (Vfb−1) V) were obtained for HfSiO film by assisted ion beam bombardment at AIE = 100 eV, which provide a initial energy for the formation of film, activate the substrate surface atoms, enhance the polarization rate and improve the film surface compact and adhesion.  相似文献   

9.
The traditional dry etching isolation process in AlGaN/GaN HEMTs causes the gate metal to contact the mesa sidewalls region, forming a parasitic gate leakage path. In this paper, we suppress the gate leakage current from the mesa-sidewall to increase the gate-to-drain breakdown voltage and thereby reduce the interface trap density by using the ion implantation (I/I) isolation technology. According to the capacitance–voltage (CV) measured curve, the hysteresis voltage was 9.3 mV and the interface state density was 5.26 × 1012 cm−2 for the I/I isolation sample. The 1/f noise phenomena and Schottky characteristics are particularly studied to indicate device linearity, which is sensitive to the semiconductor surface. The fluctuation that causes trapping/detrapping of free carriers near the gate interface can be reduced because side-wall plasma-induced damages were eliminated. The reduced DC and flicker noise variation of I/I isolation HEMTs is beneficial for high power transistor applications.  相似文献   

10.
Magnesium-doped GaAs has been grown by organometallic vapor phase epitaxy (OM-VPE). Bis (cyclopentadienyl) mag-nesium (Cp2Mg) is used as the organometallic precursor to Mg. The epitaxial layers have been characterized by resis-tivity and Hall measurements, photoluminescence spectro-scopy and optical microscopy. The material is of high electrical and optical quality; controllable doping over the range 1015 to 1019cm-3 is reproducibly attained. The ionization energy of the Mg acceptor is determined to be 30 ± 2.5 meV at 77K. Negligible compensation is observed, consistent with clean thermolysis of the Cp2Mg under growth conditions. GaAs diodes have been fabricated using Mg as the p-dopant and either Se, Si, or Sn as the n-dopant. The diodes show very low leakage currents under reverse bias, even at relatively high doping levels. Degenerately-doped junctions for interconnecting monolithic cascade concentrator solar cells have also been successfully grown, displaying forward conductivities as high as 19 amps V−1 cm-2 at 0.05V forward bias.  相似文献   

11.
Zinc incorporation by post-growth metalorganic vapor phase diffusion (MOVPD) is used to achieve high p-doping, which is desirable for the fabrication of photodiodes. Diethylzinc (DEZ) is used as precursor and Zn is diffused into InP and InAs0.6P epitaxial layers grown by low pressure metalorganic vapor phase epitaxy (MOVPE) on different substrate orientations, enabling the investigation of the dislocation density on the Zn incorporation. Diffusion depths are measured using cleave-and-stain techniques, resistivity measurements, electrochemical profiling, and secondary ion mass spectroscopy. High hole concentrations of, respectively, 1.7 1019 and 6 1018 cm−3, are obtained for, respectively, InAs0.60P and InP. The diffusion coefficients are derived and the Zn diffusion is used for the fabrication of lattice-mismatched planar PIN InAsP/InGaAs photodiodes.  相似文献   

12.
N+ implantation into p-type a-SiC (6H-SiC, 4H-SiC) epilayers at elevated temperatures was investigated and compared with implantation at room temperature (RT). When the implant dose exceeded 4 × 1015 cm−2, a complete amorphous layer was formed in RT implantation and severe damage remained even after post implantation annealing at 1500°C. By employing hot implantation at 500~800°C, the formation of a complete amorphous layer was suppressed and the residual damage after annealing was significantly reduced. For implant doses higher than 1015 cm−2, the sheet resistance of implanted layers was much reduced by hot implantation. The lowest sheet resistance of 542Ω/ was obtained by implantation at 500 ~ 800°C with a 4 × 1015 cm−2 dose. Characterization of n+-p junctions fabricated by N+ implantation into p-type epilayers was carried out in detail. The net doping concentration in the region close to the junction showed a linearly graded profile. The forward current was clearly divided into two components of diffusion and recombination. A high breakdown voltage of 615 ∼ 810V, that is almost an ideal value, was obtained, even if the implant dose exceeded 1015 cm−2. By employing hot implantation at 800°C, the reverse leakage current was significantly reduced.  相似文献   

13.
We report on the fabrication of organic photodetectors (OPD) based on isolated islands of P3HT:PCBM. Pattern transfer to the active material was done with photolithography based on non-fluorinated solvents and the excessive organic semiconductor was removed with oxygen plasma reactive ion etching. The photoresist system used was found to be benign to the P3HT:PCBM layer as confirmed by absorption, thickness and roughness measurements. Current–voltage characteristics and external quantum efficiency (EQE) remained unchanged after the patterning process. It was demonstrated that it is possible to photolithographically pattern isolated islands with 200 μm edge length with the same dark current density (<10−5 A/cm2 at −2 V bias voltage) and photocurrent density (>5 × 10−3 A/cm2 at −2 V). Furthermore, concerning the solar cell performance, the patterned, small-area devices showed power conversion efficiency of 2.1% and fill-factor of 60%. Dark current was observed to depend on the size of the remaining semiconductor island, which was demonstrated on OPDs with diameter of 50 μm. The presented results show the feasibility of fabrication of isolated devices based on organic semiconductors patterned with non-fluorinated photolithography.  相似文献   

14.
Heavily C-doped GaAs epitaxial layers with holes concentrations ranging from 1019 to 1.6×1020 cm−3 have been grown by metal organic vapour phase epitaxy (MOVPE) using CCl4 as C-growth precursor. The carbon doping characteristics of GaAs epilayers have been investigated by optimizing the V/III ratio and the growth temperature. Additional informations have been extracted from the evolution of the in situ reflectivity signal during the growth of GaAs:C. The appearance of discernible oscillations in the reflectivity response indicates the high carbon incorporation and the good surface quality in spite of the CCl4 etching effect. The hole concentration tends to saturate at about 1.5×1020 cm−3. The comparison between Hall effect measurements realized on sets of as grown and annealed layers, and theoretical calculations of the mobility lead to the determination of the compensation ratio of the samples.The lattice matching conditions were systematically investigated by using high X-ray diffraction measurements from (004) and (115) planes. A comparison between the experimental mismatch and the one calculated with the Vegard's law allows the estimation of the possible origin of the compensation. Secondary ion mass spectrometry, scanning electron microscopy and atomic force microscopy have been used as complementary tools to characterize the films.  相似文献   

15.
An amorphous Ba0.6Sr0.4TiO3 (BST) film with the thickness of 200 nm was deposited on indium-tin-oxide (ITO)-coated glass substrate through sol-gel route and post-annealing at 500 °C. The dielectric constant of the BST film was determined to be 20.6 at 100 kHz by measuring the Ag/BST/ITO parallel plate capacitor, and no dielectric tunability was observed with the bias voltage varying from −5 to 5 V. The BST film shows a dense and uniform microstructure as well as a smooth surface with the root-mean-square (RMS) roughness of about 1.4 nm. The leakage current density was found to be 3.5 × 10−8 A/cm2 at an applied voltage of −5 V. The transmittance of the BST/ITO/glass structure is more than 70% in the visible region. Pentacene based transistor using the as-prepared BST film as gate insulator exhibits a low threshold voltage of −1.3 V, the saturation field-effect mobility of 0.68 cm2/Vs, and the current on/off ratio of 3.6 × 105. The results indicate that the sol-gel derived BST film is a promising high-k gate dielectric for large-area transparent organic transistor arrays on glass substrate.  相似文献   

16.
High-power broad-area InGaNAs/GaAs quantum-well (QW) edge-emitting lasers on GaAs substrates in the 1200 nm range are reported. The epitaxial layers of the InGaNAs/GaAs QW laser wafers were grown on n+-GaAs substrates by using metal-organic chemical vapor deposition (MOCVD). The thickness of the InGaNAs/GaAs QW layers is 70 Å/1200 Å. The indium content (x) of the InxGa1−xNyAs1−y QW layers is estimated to be 0.35-0.36, while the nitrogen content (y) is estimated to be 0.006-0.009. More indium content (In) and nitrogen content (N) in the InGaNAs QW layer enables the laser emission up to 1300 nm range. The epitaxial layer quality, however, is limited by the strain in the grown layer. The devices were made with different ridge widths from 5 to 50 μm. A very low threshold current density (Jth) of 80 A/cm2 has been obtained for the 50 μm × 500 μm LD. A number of InGaNAs/GaAs epi-wafers were made into broad-area LDs. A maximum output power of 95 mW was measured for the broad-area InGaNAs/GaAs QW LDs. The variations in the output powers of the broad-area LDs are mainly due to strain-induced defects the InGaNAs QW layers.  相似文献   

17.
Ion implantation of Te was investigated as a doping process for the fabrication of submicron n-type layers in GaAs. The implantation was performed with substrates held at 350°C. After implantation, a protective overcoat of AIN or Si3N4 was sputtered on the samples to prevent the GaAs from disassociating during anneal (900°C). The electrical characteristics of the n-type implants were then measured. Current-voltage and capacitance-voltage characteristics of implanted diodes indicated that the junctions were linearly graded and that there was no intrinsic layer present after anneal. Sheet resistivity and Hall effect measurements were used to determine the surface carrier concentration and effective mobility in the implanted layers. Ionized impurity profiles extending beyond the implanted junction depth were calculated by matching differential Hall effect data with junction capacitance-voltage data. A peak electron concentration of 7 × 1018 electrons/cm3 was observed. However, the profiles exhibited penetrating tails that resulted in junction depths being much deeper than the LSS range theory would predict.  相似文献   

18.
Microwave field effect transistors have been fabricated in gallium arsenide by using sulfur ion implantation directly into semi insulating Cr doped substrates to produce the channel region, eliminating the need for growth of an epitaxial layer. This implantation method has been used to produce 0·25 μm thick, n-type layers with uniform thickness and carrier concentration, and carrier mobility ranging from 2410 to 3620 cm2/V sec in different samples. Because of the uniformity, FET's fabricated in these layers have exhibited reproducibility of transconductance and pinchoff voltage from device to device on a wafer to better than ±10 per cent. Cr doped GaAs of commonly available quality was found to be satisfactory for FET fabrication, although minimum Cr compensation is desirable to obtain highest mobility. S parameter measurements of microwave characteristics indicated a projected fmax = 20 GHz but transducer gain cutoff occurred at approximately 7 GHz because of impedance mismatch and package parasitics.  相似文献   

19.
The successful fabrication of an ion-implanted GaAs/AlGaAs heterojunction FET device is discussed. Half-micrometer gate-length FET devices are fabricated by ion implantation into GaAs/AlGa heterostructures grown by metalorganic chemical vapor deposition (MOCVD) on 3-in-diameter GaAs substrates. The FET device exhibits a maximum extrinsic transconductance of 280 mS/mm with reduced transconductance variation over 2 V of gate bias. Excellent microwave performance is achieved with an ft of 40 GHz, which is comparable to results obtained from 0.25-μm gate GaAs MESFETs. The effects of ion implantation on the heterojunction and corresponding device characteristics are also discussed  相似文献   

20.
Ultra-shallow 28–88 nm n+p junctions formed by PH3 and AsH3 plasma immersion ion implantation (PIII) have been studied. The reverse leakage current density and intrinsic bulk leakage current density of the diodes are found to be as low as 4.2 nA cm−2 and 2.4 nA cm−2, respectively. The influences of pre-annealing condition and the carrier gas on the junction depth and the sheet resistance are also studied. It is found that the increase of H or He content in the PH3 PIII can slow down the phosphorus diffusion and shallower junction can been obtained. Annealing conditions have pronounced effect on the sheet resistance. It was found that sample annealed at 850 °C for 20 s has reverse results to that annealed at 900 °C for 6 s. For AsH3 PIII samples, it is observed that two-step annealing is more effective to activate the dopant and a lower reverse current density resulted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号