首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide (TiO2) nanotubes were fabricated by anodisation of titanium foil in 0.15 M ammonium fluoride in an aqueous solution of glycerol (90 % v/v). Electropolymerisation of pyrrole and deposition of gold nanoparticles on to the TiO2 nanotube array electrode were carried out by cyclic voltammetry (CV). Electrochemical characterization of the sensor was performed by CV and electrochemical impedance spectroscopy. The morphology of the electrode was studied after every step of modification using field emission scanning electron microscope and atomic force microscope. The sensor was tested for AA and other biomolecules in phosphate buffered saline solution of pH 7 using CV, differential pulse voltammetry and amperometry. The sensor exhibited very high sensitivity of 63.912 μA mM?1 cm?2 and excellent selectivity to ascorbic acid (AA) in the presence of other biomolecules such as uric acid, dopamine, glucose and para-acetaminophen. It also showed very good linearity (R = 0.9995) over a wide range (1 μM–5 mM) of detection. The sensor was tested for AA in lemon and found its concentration to be 339 mg ml?1.  相似文献   

2.
In the present study, a simple and sensitive buspirone hydrochloride (BPH) sensor was developed based on multiwalled carbon nanotubes (MWCNT) modified electrode. The modified electrode was characterized using transmission electron microscopy and electrochemical impedance spectroscopy. The MWCNT modified electrode showed an enhanced oxidation peak current response toward BPH than unmodified electrode. The oxidation peak potential of BPH at modified electrode was 0.85, which was quite lower than that of bare electrode (0.88 V). The BPH was successfully determined at modified electrode using different electrochemical methods, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry. The good sensitivity and linear range response of BPH were obtained using amperometry when compared with other methods employed in this study (CV and DPV). The modified electrode displayed the electro-oxidation of BPH in the linear response from 0.5 to 99.5 μM with the sensitivity of 16.49 μA μM?1 cm?2. The limit of detection was calculated as 0.22 μM. In addition, the modified electrode exhibited a good repeatability and repeatability with acceptable stability.  相似文献   

3.
In this article, simultaneous determination of dihydroxybenzene isomers [hydroquinone (HQ), catechol (CC), and resorcinol (RC)] was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at thionine functionalized multiwalled carbon nanotube (TH-MWCNTs) modified glass carbon electrode. CV and DPV results showed that the TH-MWCNTs modified electrode exhibited excellent recognition ability toward the three isomers of dihydroxybenzene. Their oxidize peak currents were linear over ranges from 9.0 × 10?7 to 3.6 × 10?4 M for HQ, from 3.3 × 10?6 to 8.1 × 10?4 M for CC and from 4.3 × 10?6 to 9.0 × 10?4 M for RC, with the detection limits of 2.7 × 10?7, 1.0 × 10?6, and 1.1 × 10?6 M, respectively. The proposed method would potentially be applied to multi-component analysis in environmental control and chemical industry.  相似文献   

4.
A novel poly(crystal violet)/graphene-modified glassy carbon electrode (PCV/Gr/GCE) was fabricated for the simultaneous determination of Pb2+ and Cd2+. The electrochemical behavior of both species at the PCV/Gr/GCE was investigated employing cyclic voltammetry. In acetate buffer, the modified electrode showed an excellent electrocatalytical effect on the oxidation of both species and was further used for their determination. Under optimized analytical conditions, the oxidation peak currents of Pb2+ and Cd2+ obtained by differential pulse voltammetry in pH 4.6 acetate buffer showed a linear relationship with their concentrations in the ranges of 2.00 × 10?8–1.95 × 10?5 mol L?1 and 4.00 × 10?8–5.58 × 10?5 mol L?1, respectively. The developed method has excellent sensitivity, selectivity, reproducibility and has been successfully applied to the determination of Pb2+ and Cd2+ in water samples.  相似文献   

5.
A novel modified glassy carbon electrode (GCE) with a binuclear copper complex was fabricated using a cyclic voltammetric method in phosphate buffer solution. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both dopamine (DA) and ascorbic acid (AA) via substantial decrease in anodic overpotentials for both compounds. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of DA and AA in mixed solution, which makes it possible for simultaneous determination of both compounds. Linear analytical curves were obtained in the ranges 2.0–120.0 μM and 5.0–160.0 μM for DA and AA concentrations by using DPV methods, respectively. The detection limits were 1.4 × 10−6 M of DA and 2.8 × 10−6 M of AA. This electrode was used for AA and DA determinations in medicine and foodstuff samples with satisfactory results.  相似文献   

6.
A mixed-valent nickel hexacyanoferrate and poly(1-naphthol) hybrid (NiHCF–PNH) film was prepared on a gold (Au) electrode by a galvanostatic method, which led to stable and homogeneous hybrid film. The film was characterized using scanning electronic microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. This electrode showed excellent catalytic properties toward dopamine (DA) detection, using cyclic voltammetry and differential pulse voltammetry methods. The electrocatalytic oxidations of DA at different electrodes, such as a bare Au electrode or a poly(1-naphthol)/Au-, or NiHCF–PNH/Au-modified electrode, were investigated in a phosphate buffer solution (pH 7). Interestingly, the NiHCF–PNH-modified electrode facilitated the oxidation of DA, but it did not responded to other electroactive biomolecules, such as ascorbic acid and uric acid. The DA electrochemical sensor exhibited a linear response from 0.1 to 4.3 μM (R2 = 0.9984) and from 4.3 to 9.6 μM (R2 = 0.9969), with a detection limit of 2.1 × 10?8 M, and a short response time (3 s) for DA determination. In addition, the NiHCF–PNH-modified electrode exhibited distinct advantages by its simple preparation, specificity, and stability.  相似文献   

7.
A novel modified electrode was fabricated with 9‐aminoacridine by electropolymerization in the phosphate buffer solution (PBS) (pH 7.4) and was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) and ascorbic acid (AA). Also, it showed a high stability for the determination of DA and AA simultaneously. Well‐separated voltammetric peaks were observed for DA and AA on the modified electrode. The separation of two anodic peaks was 170 mV, which was large enough to eliminate the interference of AA and determine DA. The differential pulse voltammograms (DPV) were used for the measurement of DA by means of the poly(9‐aminoacridine)‐modified electrode in PBS at pH 7.4. A linear response toDA was observed in the concentration range from 1.5 × 10?6 to 3.5 × 10?3 mol L?1 with a correlation coefficient of 0.9998 and a detection limit (S/N = 3) of 1.0 × 10?7mol L?1. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, good reproducibility, high stability, and low cost of the modified electrode are the promising features of the proposed sensor. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3864–3870, 2007  相似文献   

8.
A novel electrochemical sensor for the determination of p-nitrophenol (PNP) was fabricated with the nanoscaled composite oxide Mg(Ni)FeO-modified carbon paste electrode (CPE), and its electrocatalytic performances were investigated using the cyclic voltammogram and differential pulse voltammetry techniques. The influential factors were optimized such as the mass ratio of Mg(Ni)FeO to graphite, the pH value of buffer solution and the accumulation time at open circuit. The indirect oxidation peak current of PNP was found to be proportional to its concentration between 2.0 × 10?6 and 2.0 × 10?4 M on the proposed sensor Mg(Ni)FeO/CPE under the optimal condition (10 % Mg(Ni)FeO/graphite, pH 5.0 HAc–NaAc, 120 s quiescence). The sensor Mg(Ni)FeO/CPE exhibited a high sensitivity of 811 μA mM?1 cm?2 and a low detection limit of 0.2 μΜ (S/N– = 3) for PNP detection, and got satisfactory results when it was applied to determine PNP in real samples. The results demonstrate that Mg(Ni)FeO/CPE based on the nanomaterial Mg(Ni)FeO with high specific area and mesoporous structure could be employed as an electrochemical sensor for PNP determination with simplicity, low cost, good selectivity, repeatability, and stability.  相似文献   

9.
Boron-doped diamond electrodes have received much attention for electrochemical determination due to their attractive electrochemical properties over other electrodes. The electrooxidation of fluvastatin sodium at boron-doped diamond electrode was investigated using cyclic, differential pulse and square wave voltammetry. The possible mechanism of oxidation was discussed with model compounds that have indole oxidation. The dependence of the peak current and potentials on pH, concentration, scan rate, and the nature of the buffer were investigated. The oxidation of fluvastatin was irreversible and exhibited a diffusion-controlled fashion. The slope of the log ip–log v linear plot was 0.44 indicating the diffusion control for pH 10.00 Britton–Robinson buffer solution. The linear response was obtained in the ranges of 1 × 10 6 M–6 × 10 4 M in pH 10.00 BR buffer solution. The detection limit of the standard solution is estimated to be 1.37 × 10 7 M for DPV, 1.44 × 10 7 M for SWV. The repeatability of the methods was found as 0.66 and 0.15 RSD % for peak currents for differential pulse and square wave voltammetry, respectively. The practical analytical value of the method is demonstrated by quantitative determination of fluvastatin in pharmaceutical formulation and human serum, without the need for separation or complex sample preparation, since there was no interference from the excipients and endogenous substances. Selectivity, reproducibility and accuracy of the developed methods were demonstrated by recovery studies.  相似文献   

10.
A novel uracil covalently grafted carbon paste electrode (Ura/CPE) based on electro-deposition of uracil on CPE was prepared for the quantitative determination of nevirapine. The records of electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) in K3Fe(CN)6/K4Fe(CN)6 solution illustrated that uracil grafted on CPE efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. The electrochemical properties of Ura/CPE towards the oxidation of nevirapine were investigated by cyclic voltammetry and differential pulse voltammetry (DPV) in 0.1 M NaOH. The effects of pH and scan rates on the oxidation of nevirapine were studied. The results indicated the participation of the same protons and electrons in the oxidation of nevirapine, and the electrochemical reaction of nevirapine on Ura/CPE is an adsorption-controlled process. Under optimized conditions, the linearity between the oxidation peak current and nevirapine concentration was obtained in the range of 0.1–70.0 μM with detection limit of 0.05 μM and the sensitivity of 2.073 μA mM?1 cm?2 (S/N = 3). The proposed method was also successfully applied to detect the concentration of nevirapine in human serum samples.  相似文献   

11.
The electrocatalytic behavior of uric acid has been investigated with a glassy carbon electrode modified with p-aminobenzene sulfonic acid through electrochemical polymerization. This resulting electrode shows an excellent electrocatalytic response to uric acid and ascorbic acid, with a peak-to-peak separation of 0.267 V in a 0.1 mol L−1 phosphate buffer solution (PBS) at pH 7.0. These results indicate that the proposed electrode can eliminate the serious interference of ascorbic acid, which coexists with uric acid in body fluids. Differential pulse voltammetry (DPV) was used for detecting uric acid with selectivity and sensitivity. The anodic peak current of uric acid was proportional to its concentration in the range of 1.2 × 10−7–8.0 × 10−4 mol L−1, with a detection limit of 4.0 × 10−8 mol L−1. The proposed method has been applied with satisfactory results to the determination of uric acid in human urine without any pretreatment.  相似文献   

12.
A novel electrochemical sensor has been constructed by using a glassy carbon electrode (GCE) coated with nafion/sodium dodecylbenzenesulfonate (SDBS). Differential pulse voltammetry (DPV) was used to study the electrochemical behaviors of dopamine (DA) and uric acid (UA). An optimum of 5 mM SDBS together with 0.05 wt% of nafion was used to improve the resolution and the determination sensitivity successfully. In 0.1 M phosphate buffer solution (pH 6.5), the modified electrode exhibited high electrocatalytical activity toward the oxidation of DA and UA with obvious reduction of overpotential. Compared with bare GCE, the modified electrode resolved the voltammetric response of DA and UA into two well-defined voltammetric peaks by DPV, which can be used for simultaneous determination of these species in mixture. The peak currents obtained from DPV were linearly related to the concentrations of DA and UA in the ranges of 4.0 × 10−7–8.0 × 10−5 M and 4.0 × 10−6–8.0 × 10−4 M, respectively. The detection limit of DA and UA (signal-to-noise ration was 3) were 5.0 × 10−8 and 4.0 × 10−7 M, respectively.  相似文献   

13.
This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 μM, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.  相似文献   

14.
An amperometric vitamin C biosensor was facilely fabricated by the immobilization of ascorbate oxidase (AO) on polypyrrole (PPy)–multiwalled carbon nanotubes (MWCNTs) composites with a one‐step electrodeposition technique in a 0.05M phosphate buffer solution (pH 6.5). The cyclic voltammetry, IR spectral analysis, electrochemical impedance spectroscopy, and scanning electron microscopy measurements indicated that AO was successfully immobilized on the PPy–MWCNT composites. The optimization of the biosensor parameters, including the working potential, pH, and temperature, was investigated in detail. The proposed biosensor showed a linear range of 5 × 10?5 to 2 × 10?2 M with a detection limit of 0.3 μM, a sensitivity of 25.9 mA mM?1 cm?2, and a current response time less than 20 s under the optimized conditions. The apparent Michaelis–Menten constant together with the apparent activation energy indicated that the proposed biosensor exhibited a high bioaffinity and a good enzyme activity. In addition, the biosensor also showed good operational and storage stabilities. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
《分离科学与技术》2012,47(11):1638-1643
Lysozyme is a naturally occurring enzyme in egg white and has high commercial importance due to its antimicrobial properties. The main objective of this work was to study the growth rate of lysozyme crystals isolated from egg for the first 72 hours and verify the results with McCabe's constant crystal growth theory. The separation of lysozyme was carried out by adsorption onto a cationic Amberlite resin using phosphate buffer at pH 4.8. Hanging drop crystallization method was used to form high purity lysozyme crystals from the embryonic stage. To this end, this work differs from an earlier work of Forsythe et al., who used seed crystals in the size range of 10 µm–40 µm for face growth measurements at different pH values. The maximum crystal size recorded in the present work was 392.86 µm, which is within the typical size range of 50 µm–500 µm for which constant crystal growth is expected to hold according to McCabe's ΔL law. Electron micrographs (SEM) revealed the structure and dimensions of the crystals while SDS-Page was used to measure the purity of the crystals. The SEM results showed that lysozyme growth rate was linear and agreed with McCabe's constant growth theory, producing a growth rate of 1.77 × 10?3 µm · s?1.  相似文献   

16.
This work reports on the electrochemical oxidation of oxytetracycline hydrochloride (OTCH) [(4S,4aS,5aS,6S,12aS)-4-dimethylamino-1,4,4a,5, 5a,6,11,12a-octahydro-3,6,10,12,12a-hexahydroxy-6-methyl-1,11-dioxonaphthacene-2-carboxamide] on a RuO2 electrode (DSA®) by cyclic voltammetry and electrolysis. The electrocatalytic efficiency of the electrode material was investigated as a function of different aqueous buffer solutions with pH values of 2.10 and 5.45 as supporting electrolytes. Spectrophotometric studies have shown that OTCH is stable in such solutions. The electrochemical degradation of OTCH is pseudo-first order at both pH values investigated with rate constants, k, of 9.9 × 10?5 s?1 (pH 2.10) and 1.9 × 10?4 s?1 (pH 5.45) at 21 ± 1 °C. Microbiological studies with Staphylococcus aureus ATCC 29213 have shown that OTCH lost antibacterial activity after 120 min of electrolysis at 50 mA cm?2.  相似文献   

17.
Microparticles based on poly(methacrylic acid-co-acrylamide) crosslinked with N,N’-methylene bisacrylamide were prepared by free radical polymerization using varying amounts of acrylamide (AAm), methacrylic acid (MAA), and N,N’-methylene bisacrylamide (NNMBA). The microparticles were loaded with antihypertensive drug, diltiazem hydrochloride (water-soluble), to investigate their release characteristics. The release behavior in pH 2.0 was much slower than in buffer solution at pH 7.4. The diffusion coefficients ranged from 08.03 × 10?6 to 25.40 × 10?6 cm2 min?1 in pH 2.0 buffer and from 02.41 × 10?4 to 35.25 × 10?4 cm2 min?1 in pH 7.4 buffer.  相似文献   

18.

The work demonstrates the development of an electrochemical sensor for quantification of Chloramphenicol (CA) using pencil graphite electrode (PGE) modified with Gadolinium tungstate nano flakes and carbon nano fibers composite (PGE/GWNfs/CNFs). The composite was further characterized and confirmed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, transmission electron microscopy analysis. The prepared GWNfs/CNFs nano composite was fabricated by drop casting method to get PGE/GWNfs/CNFs working electrode. The modified electrode is then analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods for its electrochemical and electrocatalytic property. The electrochemical investigation of developed sensor shows enhanced activity towards electro-oxidation of CA. The DPV studies revealed high efficacy characteristics such as sensitivity in the range 0.03984 µA µM?1 cm?2, selectivity, good linear range (5–50 μM), and low detection limit (0.4 μM). The study benchmarks the use of GWNfs/CNFs as an excellent transducer material in electrochemical sensing of CA in standard samples thus, it finds an efficient potential application in the analysis of CA in environment sample analysis.

  相似文献   

19.
Electrochemical oxidation of thiosalicylic acid in the presence of cationic surfactant, cetyl trimethylammonium bromide (CTAB), at a glassy carbon electrode was investigated. The electrochemical response of a modified sensor towards thiosalicylic acid determination was studied by the means of cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry (DPV). The liquid phase oxidation of thiosalicylic acid in the presence of CTAB leads to a notable enhancement in the peak current and a lowering of the peak potential. The electrochemical process was observed to be adsorption-controlled, irreversible and involves oxidation of one electron. Effects of anodic peak potential (E p), anodic peak current (I pa) and heterogeneous rate constant (k 0) were calculated. The linear response was obtained in the range of 1.0 µM–1.0 mM with a detection limit of 113 nM.  相似文献   

20.
Four new ion-selective electrodes (ISEs), based on N,N′-bis(salicylaldehyde)-p-phenylene diamine (SPD) as ionophore, are constructed for the determination of copper(II) ion. The modified carbon paste (MCPEs; electrodes I and II) and modified screen-printed sensors (MSPEs; electrodes III and IV) exhibit good potentiometric response for Cu(II) over a wide concentration range of 1.0 × 10?6 – 1.0 × 10?2 mol L?1 for electrodes (I and II) and 4.8 × 10?7–1.0 × 10?2 mol L?1 for electrodes (III and IV) with a detection limit of 1.0 × 10?6 mol L?1 for electrodes (I and II) and 4.8 × 10?7 mol L?1 for electrodes (III and IV), respectively. The slopes of the calibration graphs are 29.62 ± 0.9 and 30.12 ± 0.7 mV decade?1 for electrode (I) (tricresylphosphate (TCP) plasticizer) and electrode (II) (o-nitrophenyloctylether o-NPOE plasticizer), respectively. Also, the MSPEs showed good potentiometric slopes of 29.91 ± 0.5 and 30.70 ± 0.3 mV decade?1 for electrode (III) (TCP plasticizer) and electrode (IV) (o-NPOE plasticizer), respectively. The electrodes showed stable and reproducible potentials over a period of 60, 88, 120, and 145 days at the pH range from 3 to 7 for electrodes (II), (III), and (IV) and pH range from 3 to 6 for electrode (I). This method was successfully applied for potentiometric determination of Cu(II) in tap water, river, and formation water samples in addition to pharmaceutical preparation. The results obtained agree with those obtained with the atomic absorption spectrometry (AAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号