首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了固溶时效制度对铸造Ti-6Al-2Sn-2Zr-2Cr-2Mo-2Nb钛合金组织及力学性能的影响。结果表明,适当的热处理制度可以明显提高合金的室温及高温强度,但是塑性略有下降。Ti-6Al-2Sn-2Zr-2Cr-2Mo-2Nb铸造钛合金组织以集束状的片状α相为主,热处理后α集束的尺寸得到细化。采用915℃×2 h+空冷+590℃×4 h+空冷的热处理制度可以得到较理想的显微组织和良好的室温及高温综合力学性能。  相似文献   

2.
传统的医用钛合金最初都是为航空应用开发的,而近来专门为骨移植应用开发了低弹性模量的亚稳β钛合金.其目标是将弹性模量降到自然骨和现有植入材料之间.通常,低模量的亚稳β钛合金在低强度的固溶状态下使用.例如Ti-35Nb-7Zr-5Ta固溶状态下的弹性模量为55 GPa,屈服强度为530 MPa,延伸率为20%.通过提高氧含量及时效处理可提高Ti-35Nb-7Zr-5Ta的强度,使其成为有吸引力的医用钛合金替代品.  相似文献   

3.
对真空自耗电极电弧熔炼制备的传感器用Ti-6Ni-3Mo-1Sn合金进行热处理,先经过不同温度的固溶处理在经过500℃时效处理4 h,通过实验测试手段研究固溶温度对固溶态和时效态合金组织和力学性能的影响。研究结果表明:固溶温度700℃时,在固溶态合金晶粒中产生了大量初生α相。随着固溶温度增加,形成了更大的β晶粒。以更高温度处理后固溶态合金获得更大拉伸强度以及屈服强度,而伸长率表现为先升高再减小。经过时效处理的时效态合金晶粒中产生了许多弥散态的细小α相。以700℃固溶处理后,形成了初生α相,在残余β相内产生更多β稳定元素。随着固溶温度增加,时效态Ti-6Ni-3Mo-1Sn合金的拉伸强度,屈服强度及伸长率均表现出先增加后减小,最大值发生在固溶温度700℃时,分别为1268,1192 MPa, 5.62%。在低于700℃固溶时效处理后的试样断口区域形成许多尺寸差异较大微孔,呈现脆性断裂特点。  相似文献   

4.
沈阳材料科学国家(联合)实验室工程合金研究部多功能合金研究组近期研究发现,其研制的一种具有高强度、低弹性模量、超弹性和阻尼性能的多功能柔韧钛合金(Ti-24Nb-4Zr-7.9Sn,简称Ti-2448)的泊松比显著低于常规金属材料,是一种兼有低泊松比和高韧性的新型金属材料,在医用植入和密封等领域具有很好的应用前景.  相似文献   

5.
张帅  李伟  张忠全  马琳  白娇娇 《材料导报》2016,30(2):42-45, 60
合金多孔化是有效降低材料弹性模量的方式之一,采用添加造孔剂的元素粉末冶金法制备了新型医用多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金,通过扫描电镜、阿基米德法、X射线衍射和压缩力学性能测试的方法研究了不同造孔剂用量和粒径尺寸对合金形貌特征、孔隙率、物相组成及力学性能的影响规律。结果表明:该方法制备所得多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金为近β型钛合金;随着造孔剂用量增加,平均孔径无变化,孔隙率呈线性增长,弹性模量和抗压强度减小,其中弹性模量的变化满足线性关系;随着造孔剂粒径尺寸增加,平均孔径增大而孔隙率基本不变,抗压强度和弹性模量减小;添加20%(质量分数)粒径尺寸为125~200μm的NH4HCO3造孔剂制备多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金,于1300℃烧结4h孔隙率达到38.9%并含有贯穿孔结构,抗压强度达到405 MPa,而弹性模量为9.19GPa,能满足医用植入材料的要求。  相似文献   

6.
采用非自耗电弧熔炼方法制备Ti-24%(原子分数)Nb-(0、2、4)%(原子分数)Zr合金铸锭。铸锭经均匀化退火、固溶、冷轧和退火后,在室温下进行拉伸测试和加载卸载测试。使用光学显微镜、X射线衍射、透射电子显微镜观察试样拉伸前后组织结构变化,并结合合金拉伸曲线分析合金变形机制。结果表明具有较低强度的Ti-24%(原子分数)Nb合金出现{112}〈111〉孪晶,Zr元素的添加提高了合金强度和β相稳定性,{112}〈111〉孪晶消失,出现{332}〈113〉孪晶。加载卸载测试中合金发生应力诱发α″马氏体转变和逆转变,具有超弹性性能。Ti-24%(原子分数)Nb-2Zr合金具有较稳定的3.6%的超弹性回复,具有成为生物医用材料的潜力。  相似文献   

7.
《现代材料动态》2007,(9):19-20
沈阳材料科学国家(联合)实验室工程合金研究部多功能合金研究组研制的一种具有高强度、低弹性模量、超弹性和阻尼性能的多功能柔韧钛合金(Ti-24Nb-4Zr-7.9Sn,简称Ti2448),近期研究发现其泊松比显著低于常规金属材料,  相似文献   

8.
通过室温下拉伸实验研究了Ti-14Nb-4Sn和Ti-16Nb-4Sn(at.%)合金的超弹性。发现锻造态和400℃冰水淬火态的Ti-16Nb-4Sn合金超弹性良好,通过4%变形量循环拉伸三次即可获得完全的超弹性;而400℃冰水淬火态的Ti-14Nb-4Sn合金通过3%变形量循环拉伸两次即可完全回复。Ti-14Nb-4Sn合金和Ti-16Nb-4Sn合金均以700℃冰水淬火态断裂延伸率为最大,分别为14.42%和12.02%。锻造态Ti-14Nb-4Sn合金的马氏体逆相变回复温度As为134.8℃。XRD分析结果表明室温下Ti-16Nb-4Sn合金的组织为β相和+α″马氏体相;而Ti-14Nb-4Sn合金的室温组织除β和α″外,还存在α相。  相似文献   

9.
徐健丰  陶姗 《材料保护》2011,44(12):74-76
Tj—Nb-Ta-Zr系合金有很好的生物材料应用前景,国内对其研究较少。真空熔炼制备了Ti-29Nb.13Ta-4.6Zr铸锭,对其固溶处理后在不同温度、时间下时效处理,研究了合金时效处理后的组织结构和医用性能。结果表明:830℃固溶1.5h后的Ti-29Nb-13Ta-4.6Zr合金是单一的过冷亚稳B相,再经时效加热...  相似文献   

10.
研究了不同热处理工艺对TC4-DT钛合金棒材显微组织和力学性能的影响。结果表明:TC4-DT合金在两相区经过普通退火和再结晶退火后组织发生再结晶,α相尺寸有所增大,具有较好的塑性。经过两相区固溶+时效处理得到双态组织,通过控制固溶时冷却速度及时效温度来调整次生α片层厚度,使得合金强度和断裂韧性得到改善。经单相区固溶水冷得到马氏体组织,随时效温度提高,α片层厚度增加,但析出的次生α相含量减少,导致合金的强度和断裂韧性有所下降。而在单相区固溶空冷+高温时效处理,获得的α片层厚度进一步增大,有助于提高塑性和断裂韧性。采用950℃/1h/WQ+550℃/6h/AC两相区固溶+时效的热处理工艺,可实现合金强度、塑性、韧性的较好匹配,获得优良的综合性能。  相似文献   

11.
研究了热处理对Ti-24Nb-4Zr-8Sn(Ti2448)合金冷轧板材的显微组织和力学性能的影响,结果表明:Ti2448合金的杨氏模量和力学性能对其显微组织很敏感.在550-850℃,随着退火处理温度的升高Ti2448合金板材的晶粒长大,强度和杨氏模量降低而塑性提高;在400-500℃时效处理,合金中析出α相.控制时效时析出α相的形貌、含量和析出位置,可以调节合金强度、杨氏模量和塑性之间的匹配关系;控制热处理温度和时间可以实现高强度、低杨氏模量和良好室温塑性的匹配.  相似文献   

12.
目的 研究烧结工艺对Ti-6Al-3Nb-2Zr-1Mo合金组织演变及力学性能的影响.方法 以TiH2粉末为原料,采用粉末冶金工艺制备低成本高性能的Ti-6Al-3Nb-2Zr-1Mo合金,分析合金在不同烧结条件下组织与性能的变化规律.结果 TiH2的脱氢温度区间集中在450~700℃;Ti-6Al-3Nb-2Zr-1...  相似文献   

13.
采用钨极电弧熔炼法制备Ti-24Nb-4Zr-1.5Co钛合金,通过控制退火温度改变空冷过程中析出的ω相含量,从而研究退火工艺对该钛合金组织和性能的影响,旨在获得具有更好综合性能的医用钛合金。使用偏光显微镜、X射线衍射仪、万能材料试验机和电化学工作站分析组织性能变化。结果表明,随退火温度的升高,合金的抗拉强度和弹性模量降低,塑韧性有所提高。合金的耐腐蚀性能随退火温度的升高而改善。ω相会破坏合金的钝化膜从而恶化耐腐蚀性能,它的含量通过适当的热处理可以严格控制,从而使合金获得高强度、低模量、超弹性及高耐腐蚀性能的优良搭配。  相似文献   

14.
通过严格控制合金熔炼过程原料中杂质元素含量并添加TiO_2来熔炼出实验所需不同氧元素含量的Ti-6Al-3Nb-2Zr-1Mo钛合金铸锭。在Gleeble-3800热模拟试验机上对不同氧含量的钛合金铸锭进行热压缩实验,获得不同温度和变形速率下热压缩变形的应力-应变曲线。通过分析热变形应力应变曲线、计算本征常数,获得氧含量(质量分数)为0. 04%、0. 14%的Ti-6Al-3Nb-2Zr-1Mo钛合金的热变形本构方程。观察金相组织后发现,提高氧元素含量会显著提高合金热变形激活能,抑制合金塑性变形;但适当的氧含量又可以促进合金发生动态再结晶,使得发生动态再结晶所需要的温度降低,发生再结晶的变形速率也有所提高。促进钛合金动态再结晶形核同时,拓宽钛合金热变形过程的加工温度、变形速率的范围;但过量的氧含量也会造成合金热变形过程中流变失稳导致加工区域变小。因此在工业生产过程中需要根据具体的热加工工艺,将合金中杂质元素氧的含量控制在一个合理的范围之内,从而取得更加优异的综合性能。  相似文献   

15.
热处理对Ti35Nb3.7Zr1.3Mo合金的组织与性能影响   总被引:1,自引:1,他引:0  
依据钛合金相关设计理论设计了低弹性模量、中高强度、良好塑性的新型生物医用近β型Ti35Nb3.7Zr1.3Mo合金,研究了固溶温度和时效温度对合金组织和力学性能的影响。结果表明:随着固溶温度的升高,α相逐渐溶解,合金的强度和弹性模量尚未发生明显变化。在低温时效时析出脆性ω相;随着时效温度升高,逐渐析出α相,且α相逐渐粗化;合金的强度与弹性模量先升高,达到峰值后下降;延伸率先降低后升高。合金经750℃固溶和450℃时效后综合力学性能优良,可以满足生物植入材料力学性能的要求。  相似文献   

16.
为了改善Ti-13Nb-13Zr医用钛合金的生物活性与细胞相容性,利用放电等离子烧结(SPS)技术制备了Ti-13Nb-13Zr合金和羟基磷灰石(HA)含量5wt%的5HA/Ti-13Nb-13Zr复合材料并进行退火处理,研究了两种材料的显微组织、力学性能、表面润湿性、体外矿化行为及细胞增殖与凋亡等生物学性能。结果表明:合金主要由β-Ti和α-Ti相组成,复合材料由β-Ti、α-Ti、HA相及少量陶瓷反应相(Ca3(PO4)2、CaZrO3、CaO)组成,退火后部分初生α-Ti转变为β-Ti且组织更均匀,HA的加入会使得晶粒细化;退火后两种材料抗压强度、屈服强度、屈强比和弹性模量均略微下降;HA的加入提高了复合材料亲水性、类骨磷灰石形成能力、细胞增殖率并降低了细胞凋亡率;综合分析,退火后的5HA/Ti-13Nb-13Zr复合材料抗压强度、屈服强度和弹性模量分别为(1 744±9) MPa、(1 493±12) MPa和(43±1.6) GPa,具有优异的类骨磷灰石形成能力,同时细胞增殖率达到99.1...  相似文献   

17.
采用力学性能和电导率测试及透射电子显微镜等方法,研究了不同时效工艺对Cu-0.45Cr-0.15Zr-0.05Mg合金硬度和电导率等性能的影响规律。结果表明:合金在一级时效工艺(950℃×1h固溶+70%冷变形+520℃×2.5h时效)下有很强的时效强化效应,合金的显微硬度和电导率分别为155HV和85%IACS;采用二级时效工艺(950℃×1h固溶+70%冷变形+520℃×2h时效+60%冷变形+450℃×2h时效),合金在保持较高的电导率的同时强度得到较大提高。显微硬度为190HV,比一级时效提高了22.5%,而电导率保持在80%左右。显微组织分析表明,高强度主要来源于冷变形引起的亚结构强化和弥散相的析出强化。二级时效工艺可促进析出相的析出,析出的弥散质点对基体的回复和再结晶阻碍作用强烈。析出相与冷变形过程中产生的位错交互作用使析出相不仅阻碍位错的运动而且沿密集且分布均匀的位错快速析出,促进合金强度提高。  相似文献   

18.
具有低弹性模量、高强度、不合有毒元素的β型钛合金是目前新型医用钛合金开发的热点。本实验研究了Ti-18Nb-17Zr-xSn(质量分数%,x=0,1,2,3,4,5)合金,通过热处理调整合金显微组织,使用X射线衍射分析相组成,并对合金的硬度进行测试。通过分析,表明锡元素可以促进快冷过程中α″相的形成。在中慢速冷却过程中,锡能够和其它β稳定元素一起共同稳定β相。锡对力学性能的影响要综合考虑锡的固溶强化作用和锡对相的影响。  相似文献   

19.
为了研究Nb元素对Ti-10Mo合金组织和性能的影响,采用钨电极熔化、离心浇注工艺制备了4种钛合金(Ti-10Mo-XNb,X=0,3,7,10),分析并测试了Nb元素对Ti-10Mo合金铸态组织和力学性能的影响.研究结果表明:随着Nb含量的增加,3种Ti-Mo-Nb合金的铸态组织和相组成发生了改变,Ti-10Mo-3Nb合金由等轴的α+β晶粒组成,Ti-10Mo-7Nb合金由等轴的β晶粒组成,Ti-10Mo-10Nb合金由少量等轴和大量枝状的β晶粒组成.另外,随着Nb含量的增加,3种Ti-Mo-Nb合金的维氏硬度、压缩强度、弹性模量降低,压缩率和抗弯强度升高,压缩断口和弯曲断口由脆性断裂向韧性断裂转变.Ti-Mo-Nb合金有望成为新型的生物医用材料.  相似文献   

20.
采用弯曲和循环拉伸实验研究了新型Ti-3Zr-2Sn-3Mo-15Nb(TLM)钛合金的形状记忆和超弹性特性,探讨了变形温度、总应变和热处理对TLM钛合金形状记忆和超弹性的影响规律。实验结果表明新合金在热轧态和在α+β两相区固溶处理后比从β单相区固溶处理后具有较高的形变恢复率,最大可恢复应变可达1.8%.随着总变形应变增加,形变恢复率降低。从β相区固溶处理后TLM合金具有较好的超弹性,优于热轧态或时效处理后TLM合金的超弹性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号