首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了得到高过滤性能、低压降的纳米纤维过滤材料,研究不同质量分数的聚丙烯腈(PAN)纺丝液在不同纺丝参数下制备的纳米纤维膜,并对其形貌、结构、孔径及过滤性能进行了表征。结果表明,随着PAN质量分数的增大,静电纺丝得到的纳米纤维直径增大,纤维膜平均孔径增大,过滤效率先增大后减小。随着施加电压的增大,制备的纳米纤维直径变小,纤维膜平均孔径减小,过滤效率增大。随着注射速度的增大,制备的纳米纤维直径变化不大,纤维孔径更均匀,过滤效率得到提升。研究得到最佳的静电纺丝参数为:PAN质量分数18%,施加电压18 k V,注射速度1.5 m L/h。  相似文献   

2.
为开发用于空气过滤的纳米纤维,采用静电纺丝技术制备了聚丙烯腈(PAN)纳米纤维膜,探讨了其纺丝液质量分数及纺丝电压对所纺纤维微观形貌的影响,同时研究了纤维膜厚度对过滤效率和压降的影响。实验结果表明:PAN纺丝液质量分数为12%,纺丝电压为20 k V时,所得纤维粗细均匀,平均直径为230 nm;当纤维膜厚度由18μm增至35μm时,过滤压降则由121.93 Pa升至591.75 Pa,而过滤效率由81.78%升至99.24%。对过滤性能较好的纤维膜分别进行力学性能和泡压法滤膜孔径测试,测得此纤维膜的弹性模量为223.67 MPa,断裂伸长率为51.96%,拉伸断裂应力为5.93 MPa,拉伸强度为7.77 MPa,拉伸屈服应力为2.79 MPa,平均孔径为2.064 3μm。  相似文献   

3.
将不同质量分数的聚丙烯腈( PAN)纺丝液进行静电纺丝,制备了PAN纳米纤维多孔膜,并对静电纺PAN纳米纤维膜的形貌、纤维直径、孔隙率和比表面积、力学性能以及过滤性能进行表征和测试.结果表明,随着PAN质量分数的增加,纤维的平均直径明显增加;对应的静电纺多孔纤维膜的孔隙率和比表面积都减小、过滤效率降低.其中,由PAN质...  相似文献   

4.
利用静电纺丝技术制备PAN/竹炭粉纳米纤维膜,探讨了竹炭粉含量对纳米纤维膜微观形貌与纤维直径的影响,以及复合纳米纤维膜的过滤性能。研究结果表明:在相同工艺参数条件下,加入质量分数为2.0%的竹炭粉时,所得纳米纤维膜中纤维的直径较小(397.26nm),且纤维直径分布均匀。以纯PAN纳米纤维膜+PAN/竹炭粉纳米纤维膜+纯PAN纳米纤维膜结构作为芯层,聚丙烯(PP)非织造布作为外层制成的过滤材料,其流量大、阻力低,过滤效率高达99.85%。  相似文献   

5.
利用静电纺丝技术,在纺丝液中添加纳米银粒子,制备具有抗菌功能的聚氨酯(PU)纳米纤维膜,并分析了纺丝液配比及纺丝工艺等对纳米纤维膜结构和性能的影响。结果表明:当PU质量分数为14%,氯化锂(LiCl)质量分数为0.3%,纳米银粒子质量分数为0.1%时,纳米纤维形貌较均匀,纤维平均直径最小,为171 nm,纤维膜具有较强的抗菌性。此外,还探讨了不同走布速度下纳米纤维膜的过滤性能,当走布速度为0.18 m/min时,纳米纤维膜过滤效率达到最大,过滤效率为86.32%,过滤阻力为25.93 Pa。  相似文献   

6.
将石墨烯(GR)纳米颗粒掺杂到聚丙烯腈(PAN)纺丝溶液中,利用静电纺丝技术制备石墨烯/聚丙烯腈(GR/PAN)复合纳米纤维膜。研究PAN质量分数、GR用量、纺丝电压及接收距离对GR/PAN复合纳米纤维膜形貌和过滤性能的影响,发现最优纺丝工艺参数为PAN质量分数14.0%、GR用量1.5%、纺丝电压26 kV、接收距离14 cm、注射速度1 mL/h。此最优纺丝工艺参数制备的GR/PAN复合纳米纤维膜的过滤效率为98.86%,过滤阻力为110.30 Pa。  相似文献   

7.
采用静电纺丝技术制备口罩芯材,以获得具有纳米蛛网结构的纤维膜材料,从而赋予材料更强的空气滑移效应。采用聚丙烯腈(PAN)和不同质量分数的氯化钡(BaCl2)制备复合纤维膜。通过电导率和黏度评价纺丝液的性能;通过扫描电镜观察纤维膜的表面形貌,以纤维膜的形貌评价材料的空气过滤效果。结果表明:加入低质量分数BaCl2对纺丝液的黏度和表面张力的影响较小,而使纺丝液的电导率增大,有利于获得直径分布均匀的纳米纤维膜。采用PAN质量分数为15%的纺丝液,加入质量分数为0.4%的BaCl2,制得形貌良好的PAN纳米纤维膜。采用直径300~500 nm的电中性NaCl气溶胶颗粒对纤维膜的过滤性能进行测试,结果显示纤维膜的空气过滤效率为87.27%,具有较好的过滤效果。  相似文献   

8.
为制备高过滤效率、低过滤阻力的空气过滤材料,将氧化石墨烯纳米颗粒(GO)掺杂到聚酰亚胺(PI)纺丝溶液中,制备氧化石墨烯/聚酰亚胺(GO/PI)复合纳米纤维过滤材料。通过观察其形貌、过滤性能来确定最优纺丝工艺参数。结果表明:当PI质量分数为30%,GO质量分数为1%,纺丝电压为25 kV,接收距离为20 cm时,复合纳米薄膜的纤维形貌较好,过滤性能优良。与PI纯组分纳米纤维过滤材料相比,GO/PI复合纳米纤维过滤材料的过滤性能更好,制得GO/PI复合纳米纤维膜的平均孔径为1.8μm,过滤效率为99.68%,过滤阻力仅为85.35 Pa。  相似文献   

9.
利用静电辅助溶液喷射纺丝设备制备了间位芳纶(PMIA)纳米纤维膜,通过单因素法研究了纺丝液浓度、感应电压、牵伸风压等纺丝工艺参数对纤维膜形貌、直径和平均孔径的影响规律。并进一步研究了不同面密度PMIA纳米纤维膜的过滤性能。结果表明:纺丝液浓度和感应电压影响着纤维分布和纤维形态,纺丝液浓度和牵伸风压对纤维直径影响较大,感应电压和纺丝液浓度对纤维膜的平均孔径影响显著;当纤维膜的面密度为11 g/m2时,其过滤效率可达到99.429%,压降为125.9 Pa,表明PMIA纳米纤维膜具有良好的过滤性能;且PMIA纳米纤维膜在278.2℃以下能保持稳定的热力学性能,有利于其在高温高效空气过滤材料领域的应用。  相似文献   

10.
用98%甲酸溶解聚酰胺6(PA 6)制备质量浓度为13%纺丝液,经静电纺丝获得厚度31~60μm、纤维平均直径217 nm、表面平均孔径为234 nm的纳米纤维非织造膜.由于该纤维膜的断裂强度仅为8.06 MPa,实验以普通聚酯纤维织物为支撑基布,测试了不同样品的过滤性能.结果发现:在气流速度为2.83 L/min时,...  相似文献   

11.
利用静电纺丝技术制备聚乙烯醇/淀粉(PVA/SS)纳米纤维膜,再将其与PP纺黏布复合。通过SEM和FTIR表征纤维表面形貌和分子结构,探究PVA/SS纳米纤维膜的最优纺丝工艺参数,并测试PVA/SS纳米纤维膜的抗水解性能及PVA/SS/PP复合膜的过滤性能。结果表明,当纺丝液质量分数为11%、PVA/SS质量比为3∶1、纺丝电压为30 kV、喂液速率为0.8 mL/h、接收距离为19 cm时,纤维表面形貌最优,经160℃热处理的PVA/SS纳米纤维膜的抗水解性能优异。采用最优工艺参数纺制的PVA/SS纳米纤维膜的孔径分布在378.00~742.00 nm,平均孔径为689.00 nm。PVA/SS/PP复合膜对直径大于0.3μm的细微颗粒的过滤效率最高可达到99.363%,过滤阻力为137 Pa,低于相关国家标准的规定。  相似文献   

12.
静电纺纳米纤维具有比表面积大、纤维直径小、孔隙率高等优点,被广泛应用于空气过滤、能源光电、防水透湿等领域。利用静电纺丝技术制备氟聚氨酯(FPU)/聚氨酯(PU)/氯化锂(LiCl)纳米纤维瓦楞纸复合过滤材料,通过不同测试方法对纳米纤维瓦楞纸复合过滤材料的性能进行表征。结果显示:随着FPU质量分数的增大,纤维直径逐渐增大;当FPU质量分数为12%时,纤维直径较为规整,纤维间无粘连现象,纤维直径分布均匀,平均直径为187 nm,此时纳米纤维膜的水和油接触角分别为131°和133°,有较好的疏水性和疏油性;当纳米纤维膜的面密度为2.632 g/m^2时,纳米纤维瓦楞纸复合过滤材料的过滤效率和过滤阻力分别为93.7%和109 Pa(在气流速度为5.33 cm/s,气溶胶的粒径为0.3μm的条件下测试)。由此可见纳米纤维瓦楞纸复合过滤材料在过滤领域有较好的应用前景。  相似文献   

13.
利用多针头静电纺丝技术制备水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料,基于单因素试验及正交试验探究最佳纺丝工艺,测试其抗水解性能、红外光谱、孔径分布及过滤性能。结果表明:最佳纺丝工艺为纺丝液质量分数10%、纺丝电压30 kV、喂液速率1.0 mL/h,所得纳米纤维形貌最佳,纤维平均直径为116.99 nm、纤维直径CV值为15.09%。抗水解性能及红外光谱测试表明,与GA交联后再进行热处理能有效改善PVA的水解性。孔径分布及过滤性能测试表明,水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料是优秀的空气过滤材料,由PP纺黏布、水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料、PP纺黏布组合形成的复合过滤材料,对直径在0.3μm及以上的颗粒的过滤效率超过99%且过滤阻力仅为90 Pa,完全符合相关国家标准。  相似文献   

14.
为避免在聚酰胺纳米纤维过滤材料制备和使用过程中甲酸等溶剂对人体和环境的潜在危害,采用乙醇(溶剂)和水(非溶剂)通过静电纺丝技术制备了绿色溶剂型聚酰胺纳米纤维膜,分析了纺丝液中乙醇与水的质量比对溶液性质和纤维成形的影响,研究了纳米纤维膜本体结构与空气过滤性能之间的关系。结果表明:在聚酰胺/乙醇溶液体系中加入适量的水能减小纤维直径,但过量的水又会使纤维直径增大,当溶剂中乙醇与水质量比为9:1时,聚酰胺纤维最细,平均直径为332 nm;该聚酰胺纳米纤维膜具有小孔径(0.7μm左右)、高孔隙率(84%)的孔结构,对最易穿透粒径颗粒物PM0.3具有较好的过滤性能,过滤效率为99.02%,阻力压降为158 Pa,品质因子为0.029 3 Pa-1。  相似文献   

15.
对适用于全新风系统的高效低阻并具有抑菌性能的复合空气过滤材料进行研发。先将聚丙烯腈(PAN)静电纺纳米纤维膜沉积到优选的丙纶(PP纤维)针刺过滤材料上,测试其过滤性能,采用极差分析和灰色聚类分析法选出最优静电纺丝工艺参数;再配制石墨烯质量分数分别为0.5%、1.0%和1.5%的石墨烯/PAN静电纺丝液,基于最优静电纺丝工艺参数,制备石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料,测试并分析其过滤性能和抑菌性能。结果表明:制备PAN静电纺纳米纤维膜的最优静电纺丝工艺参数为PAN质量分数11.0%、纺丝电压15 kV、注射速度0.84 mL/h、接收距离14 cm;在最优静电纺丝工艺参数条件下,石墨烯质量分数为0.5%时,石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料的过滤性能最好。石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料高效低阻,并具有优良的抑菌性能,适用于全新风系统过滤室内空气中的微细颗粒物。  相似文献   

16.
为探究膜材料对纤维膜亲水性的影响机制,首先以聚丙烯腈(PAN)为原料制备偕胺肟(PAO),之后通过静电纺丝法制备PAO纳米纤维膜,并对其表面形貌、纤维直径、平均孔径、表面粗糙度、表面润湿性、力学性能、纤维膜官能团组成和油水乳液分离性能进行测试与分析。结果表明:静电纺丝技术可成功制备PAO纳米纤维膜,该纤维膜表面亲水性、油水乳液分离性能与未经偕胺肟化处理的PAN纤维膜相比有明显提升,当静电纺丝PAO质量分数为10%时,制备的PAO纳米纤维膜表现出优异的表面润湿性能和油水乳液分离性能,其初始水接触角为15.6°,水下油接触角为157°,对硅油乳液的分离通量为1 362.9 L/(m2·h),截留率为99.1%。  相似文献   

17.
以聚丙烯腈(PAN)为原料,N,N-二甲基甲酰胺为溶剂制备纺丝液并进行静电纺丝,用熔喷聚丙烯(PP)非织造材料为基材接收静电纺PAN纳米纤维膜,制备PAN静电纺/PP熔喷复合材料。研究了静电纺丝工艺参数对纤维直径及均匀度的影响,优化了静电纺丝工艺,在此基础上改变纺丝时间控制熔喷非织造材料表面复合的静电纺纳米纤维含量,通过AFC-131滤料性能测试系统测试了PAN静电纺/PP熔喷复合材料的空气过滤性能。结果表明,在熔喷非织造材料喷覆静电纺PAN纳米纤维膜后,过滤效率明显提高,颗粒越小,过滤效率提高越多,且随喷覆时间的增加,过滤效率提高,滤阻增加,但滤阻增加值小于过滤效率增加值,综合考虑在纺丝时间为10min时,可以制备高效低阻的PAN静电纺/PP熔喷复合非织造过滤材料。  相似文献   

18.
文章采用静电纺丝技术,以二氧化硅(SiO_2)作为驻极体,制备了不同的PAN/SiO_2复合驻极纳米纤维膜,并对其微观结构、透气性能和过滤性能等进行了分析。结果发现:与纯PAN纳米纤维滤膜相比,PAN/SiO_2纳米纤维的直径和表面水接触角都呈现增加的趋势。随着SiO_2质量分数的增加,PAN/SiO_2纳米纤维滤膜的透气率先减小后增加,过滤效率和阻力压降先增加后减小。当SiO_2的质量分数为0.5%,纺丝时间为30 min,制备的PAN/SiO_2复合纳米纤维滤膜的品质因子最高为0.087 15 Pa-1,此时滤膜的透气率为65 mm/s,过滤效率为99.95%,阻力压降为87.22 Pa,过滤性能最优,可开发高效低阻的空气过滤材料。  相似文献   

19.
为了提高聚丙烯腈(PNA)基材料的过滤性能,采用静电纺丝的方法制备了含有不同质量分数石墨烯的PNA /石墨烯纳米纤维复合材料。并对复合材料的过滤效果及抗菌性能进行研究,探讨气流量及孔径分布对过滤效果的影响。研究结果表明:当氧化石墨烯(GO)的质量分数为0.3%时,纺制的纤维平均直径为103nm,复合膜的过滤性能最好;纳米复合材料的过滤效率随气流量的增加而减小,孔径尺寸分布在1.3 ~ 1.7μm 之间时最有利于过滤效率的提高;当GO和还原性氧化石墨烯(rGO)质量分数均为0.3%时,PAN /GO 纳米复合材料比PAN/rGO 纳米复合材料的过滤性能好,PAN / GO 和PAN/rGO 纳米复合材料对大肠杆菌的抑菌率分别为32.4%和40.5%,对金黄色葡萄球菌的抑菌率分别为45.8%和56.7%。  相似文献   

20.
针对聚丙烯(PP)熔喷非织造布抗菌性能不足的问题,本文以PP熔喷非织造布为静电纺丝装置的接受基布、CuO-NPs为抗菌材料,制备具有高效抗菌性能的聚丙烯/聚丙烯腈/纳米氧化铜(PP/PAN/CuO-NPs)复合非织造布。研究了CuO-NPs质量分数与静电纺丝时间对复合非织造布抗菌等性能的影响。结果表明:当纺丝时间为1 h、CuO-NPs质量分数在0.3%~0.9%时,复合非织造布对E.coli和S.aureus的抑菌率均>99.99%。纺丝时间为1 h,随着CuO-NPs质量分数增大,复合非织造布纤维直径增大、直径分布均匀性降低、疏水性能下降。CuO-NPs质量分数不变,随着纺丝时间增加,复合非织造布的过滤效率提升,透气性却下降。纺丝时间相同,复合非织造布的过滤效率随着CuO-NPs质量分数增大而增大;CuO-NPs质量分数增大时,复合非织造布的透气性在较短纺丝时间(0.5~1 h)内先下降后提升,在较长纺丝时间(1.5~2.5 h)内显著下降。此外,CuO-NPs的加入不会改变PAN纳米纤维膜的化学结构。静电纺纳米纤维膜与PP基布的复合可以制备高效过滤和抑菌的医用防疫纺织品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号