首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
以自行开发的贝氏体轴承钢为研究对象,采用热模拟试验机在变形温度900~1 200℃、应变速率0.01~5 s-1条件下进行单道次热压缩试验,研究了该钢的热压缩变形行为,基于真应力、真应变数据,建立热变形本构方程,并绘制热加工图。结果表明:当变形温度不低于1 000℃、应变速率低于0.1 s-1时,试验钢在热压缩过程中的动态再结晶较明显。在相同应变速率下,变形温度越高,峰值应力越小,到达峰值应力的真应变也越小;在相同变形温度下,应变速率越大,峰值应力越大,达到峰值应力的真应变也越大。试验钢的变形激活能为479.119 kJ·mol-1,明显大于传统GCr15马氏体轴承钢,说明在相同变形温度下试验钢更难以变形。试验钢适宜的热加工区间为变形温度900~1 100℃、应变速率1.4~2 s-1。  相似文献   

2.
采用Gleeble-1500型热模拟试验机对60钢进行不同温度(730,750,800,850,900,1 000℃)和不同应变速率(0.01,0.1,1,5,10 s-1)的热压缩试验,总真应变为0.8,分析了60钢在热压缩过程中的变形行为;引入变参数Arrhenius模型,采用五阶多项式对模型中各参数随应变的变化关系进行拟合,构建出60钢高温变形本构方程,并对方程的精确性进行了评估。结果表明:变形温度越高,应变速率越低,60钢的流变应力越小;在较低温度和较高应变速率下,60钢热压缩变形的软化机制主要为动态回复,在较高温度和较低应变速率下则主要为动态再结晶;建立的变参数Arrhenius本构方程对流变应力的预测值与试验值的拟合相关系数达到0.994 597,说明该本构方程可以较好地描述60钢的高温变形行为。  相似文献   

3.
在304不锈钢成分基础上,添加了质量分数1.96%的硼元素,采用真空感应熔炼技术制备含硼不锈钢,对该钢进行单道次热压缩试验,研究了该钢在900~1150℃ 和应变速率0.1~10 s-1条件下的热变形行为;根据试验数据,基于Arrhenius方程并结合5次多项式拟合建立该钢的热变形本构模型,对加工硬化率-真应力曲线进行分析确定该钢发生动态再结晶的临界条件.结果表明:在试验参数下热压缩后,含硼不锈钢的流变应力-应变曲线为典型的动态再结晶型,软化机制以动态再结晶为主;随着变形温度的升高或应变速率的减小,试验钢的峰值应力及其对应的真应变降低;采用所建立的热变形本构方程计算得到的真应力-真应变曲线与试验测得的相吻合,平均相对误差绝对值为2.76%,说明该本构模型能够准确预测含硼不锈钢的热变形行为;变形温度较高、应变速率较小时,该钢较易发生动态再结晶.  相似文献   

4.
采用Gleeble-3800型热力模拟试验机,在温度为1 123~1 423K、应变速率为0.01~10 s-1的条件下,对40Cr Ni2Mo E钢进行了高温轴向单道次压缩变形试验,根据压缩试验结果绘制了高温塑性流变曲线,并观察了变形后的显微组织。结果表明:该钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;在真应变为0.9,应变速率为0.01~10 s-1的条件下,随着应变速率的提高,其发生完全动态再结晶的温度也逐渐升高;当应变速率为10 s-1,变形温度高于1 323 K时,该钢才会发生完全动态再结晶;计算得到40Cr Ni2Mo E钢的热变形激活能为333.726 k J·mol-1,并建立了该钢动态再结晶条件下峰值应变与Zener-Hollomon因子的定量关系以及高温塑性变形本构方程。  相似文献   

5.
采用热模拟方法研究了18CrNiMo7-6齿轮钢在变形温度900~1 150℃、应变速率0.01~5 s-1条件下的热压缩变形行为;建立了基于Arrhenius模型的全应变本构方程,采用该方程对流变应力曲线进行预测;根据动态材料模型绘制热加工图,并结合热加工图系统地研究显微组织演变特征。结果表明:试验钢的峰值应力随应变速率的增加或变形温度的降低而增大,动态回复和动态再结晶是热变形过程中的主要软化机制;采用建立的全应变本构方程预测得到流变应力曲线与试验结果基本吻合,预测真应力与试验结果的相对误差小于4.715%,说明该模型可以精确地模拟18CrNiMo7-6齿轮钢的热压缩变形行为。试验钢的适合热加工工艺参数为变形温度1 050~1 150℃、应变速率0.1~1 s-1,此时组织为均匀细小的再结晶晶粒,晶粒尺寸在5~15μm。随着变形温度的升高或应变速率的降低,原始奥氏体晶粒不断被动态再结晶晶粒取代,且动态再结晶程度和再结晶晶粒尺寸增大。  相似文献   

6.
采用Gleeble-3800型热模拟试验机在温度1 173~1 473K、应变速率0.01~10s-1的条件下,对镍微合金化9310钢的高温热变形前行为进行了研究,得到了试验钢的高温流变曲线,并用光学显微镜观察了试验钢变形前后的显微组织。结果表明:镍微合金化9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;试验钢在真应变为0.9,应变速率为0.01~10s-1的条件下,随着应变速率的提高,其发生完全动态再结晶的温度也逐渐升高;测得试验钢的热变形激活能Q值为362.649kJ·mol-1,并建立了其热变形方程以及动态再结晶条件下峰值应变σp与Zener-Hollomon因子的关系式。  相似文献   

7.
利用Gleeble-3500型热模拟试验机,研究了M50NiL齿轮钢在变形温度为1 123.15~1 423.15K、应变速率为0.005~10s-1条件下的变形行为,并对实测流变曲线进行了摩擦修正;基于应变速率和变形温度对金属高温变形的耦合效应,建立了基于Johnson-Cook(J-C)模型的耦合流变应力本构方程并进行了验证。结果表明:对试验钢流变曲线摩擦修正后,得到的流变应力比实测值小;经变形参数耦合修正后的J-C耦合本构方程计算得到的流变应力与摩擦修正后流变应力的平均相对误差为3.08%,其预测精度高于传统J-C本构方程(平均相对误差为14.31%)的。  相似文献   

8.
采用Gleeble-3500型热力模拟试验机对新型CHDG-A06奥氏体不锈钢进行单道次压缩试验,研究了其在变形温度为950~1 100℃、应变速率为0.01~1s~(-1)条件下的热变形行为,并对变形后的显微组织进行了观察;根据试验钢的应力-应变曲线,通过线性回归建立了它的高温热变形本构模型。结果表明:在热变形过程中,变形温度和应变速率对流变应力的影响显著,流变应力随着变形温度的升高或应变速率的降低而降低;动态再结晶易发生在较低应变速率(≤0.1s~(-1))或较高变形温度(≥1 050℃)下;利用峰值应力求得该钢的双曲线正弦本构方程,并得到其热变形激活能为453.674 4kJ·mol~(-1)。  相似文献   

9.
采用Gleeble-1500D型热模拟试验机对Cr9Mo高合金钢进行热压缩变形,研究了该钢在温度1 173~1 473 K和应变速率10-3~1 s-1条件下的热塑性变形行为;并基于经典的应力-位错关系和动态再结晶动力学理论,分别建立了Cr9Mo钢的加工硬化-动态回复和动态再结晶两阶段的流变应力本构方程。结果表明:所建立的两个阶段的流变应力本构方程与试验曲线吻合较好,可以用该方程来预测Cr9Mo钢的高温流变行为。  相似文献   

10.
采用Gleeble 3500型热模拟试验机对HG700汽车大梁钢进行单道次压缩试验,研究了其在变形温度950~1 150℃和应变速率0.01~5.00s~(-1)条件下的流变应力行为;根据真应力-真应变曲线,采用线性回归方法建立该钢的流变应力本构模型,并进行了试验验证。结果表明:在高应变速率(1.00,5.00s~(-1))下,HG700汽车大梁钢的动态软化行为以动态回复为主,而在低应变速率(0.01,0.10s~(-1))下,HG700汽车大梁钢发生了明显的动态再结晶;变形温度的升高及应变速率的降低均会促进流变应力的降低,且会促进应力更早达到峰值;由构建的以变形温度、应变速率、真应变为变量的流变应力本构模型得到的预测结果与试验结果吻合良好,该模型可准确地预测HG700汽车大梁钢的流变应力。  相似文献   

11.
采用Gleeble-3180型热模拟试验机对2219铝合金进行单道次热压缩试验,研究了该铝合金在温度为200~350℃、应变速率为0.1~10.0s-1条件下的流变行为,建立了2219铝合金热压缩时的流变应力本构方程,并进行了试验验证。结果表明:2219铝合金的流变应力随应变速率的增大或变形温度的降低而增加;由Fields-Backofen本构方程计算得到的2219铝合金应力的变化规律与试验得到的相同,且应力计算值与试验值的相对误差小于5%,该本构方程可以较准确地描述2219铝合金的高温流变行为。  相似文献   

12.
在Gleeble-3500型热加工模拟试验机上进行了GH4169镍基合金的高温压缩试验,变形温度为980℃~1100℃、应变速率为0,01s^-1、0,1s^-1、1s^-1、10s^-1,变形程度为50%。通过绘制真应力一真应变曲线,研究了GH4169镍基高温合金高温下的流变应力行为。结果表明:GH4169是应变速率和变形温度敏感型材料,变形温度升高和应变速率减小使流变应力显著减小;在变形的初始阶段,流变应力迅速增加,在到达峰值后,随着应变的增加,流变应力逐渐下降,并趋于一稳定值。采用简化后的双曲正弦模型Arrhenius方程,建立了GH4169高温条件下的本构方程,运用该方程计算出的峰值应力与试验测量值相比,拟合度达到了95.95%。  相似文献   

13.
新型TA32钛合金板的高温拉伸变形行为   总被引:1,自引:0,他引:1  
在变形温度650~850℃、应变速率0.001~0.100s-1条件下对TA32钛合金板进行高温拉伸试验,研究了变形温度和应变速率对合金高温拉伸变形行为的影响;基于修正的Hooke定律和Grosman方程建立TA32钛合金的高温流变本构方程并进行试验验证。结果表明:TA32钛合金的流变应力受变形温度和应变速率的影响显著,变形温度的升高和应变速率的降低均会使流变应力减小;在变形温度650℃、应变速率0.100s-1下,合金的抗拉强度为680 MPa,约为常温抗拉强度的80%,合金仍具有较高的强度;当变形温度由750℃升至850℃时,合金伸长率的增长幅度和强度的下降幅度均较明显,合金塑性较好;采用建立的高温流变本构方程计算得到的真应力-真应变曲线与试验结果基本吻合,其相关系数和平均相对误差分别为0.979 4和11.1%,该本构模型可较好地描述TA32钛合金的高温拉伸变形行为。  相似文献   

14.
采用热模拟试验机对60Si2CrVAT高强度弹簧钢在不同温度(900,950,1 050,1 150℃)和应变速率下(0.1,1,5,10s~(-1))进行热压缩变形,研究了变形温度和应变速率对该钢热变形行为的影响规律;在此基础上,根据Arrhenius双曲正弦方程,建立了该钢的热压缩变形本构方程。结果表明:该钢的流变应力随着变形速率的增大而增大,随变形温度的升高而减小,动态再结晶在高变形温度和低应变速率下更容易发生;真应变为0.2时的变形激活能为372kJ·mol~(-1),流变应力的计算值与试验值之间的平均相对误差为4.89%,吻合得较好。  相似文献   

15.
邱亮 《一重技术》2010,(3):36-38
利用Gleeble热力模拟试验机在温度为1 123~1 473 K和应变速率为0.001~0.1 s-1的条件下对试验钢进行了热压缩变形试验,测定了其真应力-应变曲线,试验结果表明:试验钢在热压缩变形过程中发生了明显的动态再结晶,流变应力随变形温度的降低和应变速率的提高而增大。通过线性回归分析确定了试验钢的流变应力本构方程。  相似文献   

16.
利用Gleeble热力模拟试验机研究了304奥氏体不锈钢在变形温度950~1 150℃、应变速率0.05~1 s-1条件下的热压缩行为,根据真应力-真应变曲线,基于Arrhenius模型构建其在高温下的本构方程,并建立热加工图;基于试验数据建立动态再结晶模型,采用Deform软件对该钢的再结晶行为进行模拟,并进行试验验证。结果表明:随着应变速率的增大或变形温度的降低,不锈钢的流变应力增大;在变形温度1 080~1 120℃、应变速率0.05~0.2 s-1和变形温度1 120~1 150℃、应变速率0.5~1 s-1下,该钢具有良好的热加工性能;模拟得到在变形温度1 000℃、应变速率0.05 s-1和变形温度1 100℃、应变速率0.05 s-1下,试样心部再结晶晶粒体积分数和尺寸与试验结果间的相对误差小于7.62%,验证动态再结晶模型的准确性。  相似文献   

17.
通过热模拟试验机测定了Fe-3.0%Si-0.09%Nb取向硅钢在不同变形温度和应变速率下的真应力-真应变曲线,分析了变形参数对流变应力的影响规律,通过线性回归分析计算出该取向硅钢的热变形应力指数n以及变形激活能Q,并构建了流变应力本构方程。结果表明:该取向硅钢的真应力-真应变曲线为动态回复型,其变形时的流变应力主要取决于变形温度和应变速率;当应变速率一定时,流变应力随着变形温度的升高而减小;变形温度一定时,流变应力随着应变速率的增大而增大;用构建的Fe-3.0%Si-0.09%Nb取向硅钢流变应力本构方程计算得到的流变应力与通过试验测得的结果相吻合。  相似文献   

18.
在变形温度为750~950℃、应变速率为0.1~0.001s-1下进行Ti2AlNb合金高温拉伸试验,研究了温度和应变速率对其抗拉强度和伸长率的影响,建立了高温变形条件下的应力-应变本构模型。结果表明:Ti2AlNb合金是温度和应变速率敏感性材料,随着温度的升高或应变速率的降低,合金的抗拉强度下降,伸长率升高;通过修正Hooke定律和Grosman方程所建立的Ti2AlNb合金热成形本构方程,其计算得到的流变曲线和试验曲线较吻合,可用于表征Ti2AlNb合金的高温变形行为。  相似文献   

19.
在应变速率为0.01~10 s-1、温度为250~450℃的条件下,采用Gleeble-1500型热模拟试验机对7075铝合金进行了高温热压缩试验,得出其变形过程中的真应力-真应变曲线;通过拟合回归分析得出了该合金高温变形过程中的本构模型并对其应变行为进行了预测。结果表明:在峰值应力之前,Fields-Backofen本构模型预测值与试验值比较吻合;在加入软化因子之后,模型的预测值更接近试验值。  相似文献   

20.
在Gleeb-3500型热模拟试验机上对铸态GCr15SiMn轴承钢进行热压缩试验,研究了变形温度(1 223~1 423K)和应变速率(0.1~10.0s~(-1))对流变应力的影响,观察了显微组织;采用基于TEGART和SELLARS等提出的Arrhenius方程,通过试验数据的拟合建立了试验钢的流变应力本构方程,并进行了验证。结果表明:在试验条件下变形时,试验钢的流变曲线均呈现出动态再结晶软化特征,提高变形温度或降低应变速率均可降低其流变应力;在应变速率1.0s~(-1)条件下,升高变形温度会促进试验钢的动态再结晶,同时也使晶粒长大粗化;在变形温度1 423K、应变速率0.1~1.0s~(-1)条件下,应变速率越大,动态再结晶晶粒越细;由建立的流变应力本构方程预测得到的峰值应力与试验结果的平均相对误差为0.393%,说明本构方程较准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号