首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

2.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

3.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

4.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

5.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

6.
Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_2是一种高比容量锂离子电池正极材料。本文研究通过活性炭中孔道吸附钴、锰、镍盐的混合溶液的途径来制备纳米LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料。XRD研究显示,600℃和800℃焙烧得到的材料相比,700℃下焙烧得到的材料具有低的阳离子混排程度,因而具有好的充放电性能,在0.2C电流下充放,该材料的首次比容量为188.3mAh g~(-1),50圈循环后,容量仍达140.9m Ah g~(-1),容量保持率为74.0%。  相似文献   

7.
本文以燃烧法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2基体,通过机械球磨得到石墨烯修饰的正极材料。用扫描电镜(SEM)、X射线衍射(XRD)、电池测试和电化学工作站表征了材料的晶体结构和电化学性能。结果表明,石墨烯的修饰显著提高了Li Ni_(0.6)Co_(0.2)Mn_(0.2)O_2的容量和循环稳定性:经200℃热处理、1%石墨烯修饰后的样品在3.0~4.3 V、0.1C倍率下首次放电比容量达到170.8 mA·h·g~(-1),比基体材料提高了12 mA·h·g~(-1);1C下循环100周后容量保持率分别为91.1%,比基体提高了6.9%。  相似文献   

8.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

9.
通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g~(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g~(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。  相似文献   

10.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

11.
采用典型的湿化学法制备了2%(wt)FeF_3包覆的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料,并且通过XRD,SEM及TEM等技术来分析材料的微观结构和形貌。结果显示,在Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料表面包覆着一层5~20 nm厚的FeF_3薄膜。通过电化学性能测试发现,2%(wt)FeF_3@Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2样品的首次库伦效率更高,高倍率性能更佳,循环性能更加稳定。在0.5C倍率下循环100次后,其容量保持率仍有94.2%,放电比容量为190.6 m Ah×g~(-1)。同时电化学阻抗结果表明,FeF_3包覆层能够抑制Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和电解液之间的副反应,稳定材料的层状结构。  相似文献   

12.
用VGCF为模板,用共沉淀方法辅助合成了棒状结构的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X-射线衍射仪(XRD)、X射线能谱仪(EDX)、扫描电子显微镜(SEM)对其结构进行了表征,并研究了其电化学性能。结果表明:该材料为棒状且表面多孔,并表现出了良好的电化学性能。在0. 2 C(1 C=170 m A/g)的电流密度下,其容量为160 m Ah/g以上,在1 C下经过250个循环后容量仍然有115. 2 m Ah/g,对于制备其他棒状结构的锂离子正极材料提供了一定的借鉴。  相似文献   

13.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

14.
采用干湿结合回收技术回收了废旧锌锰干电池中的锰,讨论了硝酸浓度对碳酸锰回收率的影响。将得到的碳酸锰作为锰源,采用溶胶凝胶法制备了三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过沉积法使氢氧化铝胶体沉积在材料表面对三元正极材料进行表面包覆改性。而且对所得产品进行了XRD、TEM表征和电化学性能检测。结果表明,少量包覆不会改变材料的层状结构,材料首次放电比容量达到152 m A·h/g,且提高了循环性能,循环充放电100次后,放电比容量为117.3 m A·h/g。  相似文献   

15.
采用溶胶-凝胶法合成钠离子电池正极材料Na(Mn_(0.4)Fe_(0.2)Ni_(0.4))O_2,并对其进行Mg元素掺杂合成Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2材料,分别对2种材料的表面形貌、结构以及电化学性能进行了研究。结果表明:掺杂合成的样品Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2同样具有O3型层状结构,虽然首次放电比容量降低至125.6 m Ah/g,但是其循环性能和倍率性能却明显优于原始样品。在循环50次之后,其放电比容量仍可达114.7 m Ah/g,对应的容量保持率为91.3%。在1 C倍率下,仍能释放出90.1 m Ah/g的可逆容量。此外,交流阻抗结果表明,该材料具有更小的电荷转移阻抗。  相似文献   

16.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li_(1.2)Ni_(0.16)Mn_(0.56)Cr_(0.08)O_2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g~(-1)增加到246.6 mA·h·g~(-1),在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g~(-1)增加到104.2 mA·h·g~(-1)。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

17.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

18.
三元正极材料在高能量密度和低成本方面表现出吸引人的性能。然而,这些材料容易在颗粒表面发生降解。所以,在这项工作中选用氧化钕作为涂层包覆在三元正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2表面,并进行了一系列表征测试。测试结果显示包覆前后材料具有相同的物相与相似的形貌。当Nd_2O_3的包覆量为x=0.03时,Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2的电化学性能得到提高,即使在5C倍率下,放电容量仍能达到113.2 mAh·g~(-1)。在0.2C下100次循环后容量保持率为88.2%。因此通过氧化钕的包覆可以提高材料的结构稳定性以及电化学动力学。  相似文献   

19.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi_(0.5)Mn_(1.5)O_4/Li电池的电化学行为和LiNi_(0.5)Mn_(1.5)O_4材料表面形貌。结果表明,当在电解液中添加20%(体积分数) BMIMTFSI时,LiNi_(0.5)Mn_(1.5)O_4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g~(-1),5C下的放电比容量为109.36 mA·h·g~(-1),比在1 mol·L~(-1)LiPF_6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi_(0.5)Mn_(1.5)O_4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

20.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号