首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly sensitive and rapid method, based on latex agglutination, has been developed for measuring antithrombin III (AT III) in the blood serum of patients and donors. The sensitivity of analysis is 0.6 microgram/ml, time 2 to 3 min. The method is simple, requires no sophisticated equipment, and may be used under field conditions. The results are assessed visually. Immunochemical reagents have been synthesized for the method: latex conjugates and specific antibodies to AT III. The method was tried in patients with peritonitis. An additional criterion for diagnosing the respiratory distress syndrome of adults in this patient population has been developed.  相似文献   

2.
The direct-acting dopamine (DA) agonist pramipexole (2 amino-4,5,6,7-tetrahydro-6-propyl-amino-benzthiazole-dihydrochlori de) was evaluated for its ability to attenuate levodopa-induced loss of tyrosine hydroxylase immunoreactive (THir, a marker for dopamine neurons) cells in mesencephalic cultures. Pramipexole reduced levodopa-induced THir cell loss in a dose-dependent and saturable fashion (ED50 = 500 pM), its inactive stereoisomer was significantly less potent in this regard and pergolide and bromocriptine had negligible cytoprotective effects. Culture media from mesencephalic cultures incubated with pramipexole for 6 days increased THir cell counts in freshly harvested recipient cultures. The magnitude of this effect was directly proportional to the amount of pramipexole in the donor cultures and heat-inactivation of the media abolished the growth promoting effect. The results from this exploratory set of experiments suggest that pramipexole may be cytoprotective to dopamine neurons in tissue culture. Pramipexole's affinity for DA receptors, its antioxidant action or its ability to enhance mesencephalic trophic activity could be responsible for this effect.  相似文献   

3.
BACKGROUND: In patients receiving long-term parenteral nutrition (PN), cholestatic disease and nervous system disorders have been associated with high blood concentrations of manganese. In such patients, the normal homoeostatic mechanisms of the liver and gut are bypassed and the requirement for this trace element is not known; nor has it been certain whether hypermanganesaemia causes the cholestasis or vice versa. We explored the direction of effect by serial tests of liver function after withdrawal of manganese supplements from children receiving long-term PN. We also examined the relation between blood manganese concentrations and brain lesions, as indicated by clinical examination and magnetic resonance imaging (MRI). METHODS: From a combined group of 57 children receiving PN we identified 11 with the combination of hypermanganesaemia and cholestasis; one also had a movement disorder. Manganese supplements were reduced in the first three and withdrawn in the remainder. MRI was done in two of these children. We also looked at manganese concentrations and MRI scans in six children who had received PN for more than 2 years without developing liver disease. FINDINGS: In the hypermanganesaemia/cholestasis group, four of the 11 patients died. In the seven survivors baseline whole-blood manganese was 615-1840 nmol/L, and after 4 months it had declined by a median of 643 nmol/L (p < 0.01). Over the same interval total bilirubin declined by a median of 70 mumol/L (p < 0.05). Two of these children had movement disorders, one of whom survived to have an MRI scan; this showed, with T1 weighted images, bilateral symmetrically increased signal intensity in the globus pallidus and subthalamic nuclei. Such changes were also seen in five other children--one from the hypermanganesaemia/cholestasis group and four of six in the long-term PN group without liver disease (in all of whom blood manganese was above normal). INTERPRETATION: The cholestasis complicating PN is multifactorial, but these results add to the evidence that manganese contributes. In view of the additional hazard of basal ganglia damage from high manganese levels in children receiving long-term PN, we recommend a low dose regimen of not more than 0.018 mumol/kg per 24 h together with regular examination of the nervous system.  相似文献   

4.
5.
Recent in vitro studies have described the toxicity of levodopa (L-DOPA) to dopamine (DA) neurons. We investigated whether metabolic inhibition with rotenone, an inhibitor of complex I of the mitochondrial respiratory chain, may enhance the toxicity of L-DOPA toward DA neurons in mesencephalic cultures. The uptakes of DA and GABA were determined to evaluate the functional and morphological integrity of DA and non-DA neurons, respectively. Pretreatment with rotenone significantly augmented the toxic effect of L-DOPA on DA neurons. Interestingly, prior metabolic inhibition with rotenone rendered DA cells susceptible to a dose (5 microM) of L-DOPA that otherwise exhibited no toxic effect. DA uptake was more intensely attenuated than GABA uptake after the combined exposure to rotenone and L-DOPA. This was confirmed by cell survival estimation showing that tyrosine hydroxylase-positive DA cells are more vulnerable to the sequential exposure to the drugs than total cells. The selective toxic effect of L-DOPA on rotenone-pretreated DA neurons was significantly blocked by antioxidants, but not antagonists of NMDA or non-NMDA glutamate receptors. This indicates that oxidative stress play a central role in mediating the selective damage of DA cells in the present experimental paradigm. Our results raise the possibility that long-term L-DOPA treatment could accelerate the progression of degeneration of DA neurons in patients with Parkinson's disease where potential energy failure due to mitochondrial defects has been demonstrated to take place.  相似文献   

6.
The effect of two isoforms of platelet-derived growth factor (PDGF), PDGF-AA and PDGF-BB, was tested on dissociated cell cultures of ventral mesencephalon from rat and human embryos. PDGF-BB but not PDGF-AA reduced the progressive loss of tyrosine hydroxylase- (TH)-positive neurons in rat and human cell cultures. The mean number of TH-positive cells in the PDGF-BB-treated rat culture was 64% and 106% higher than in the control cultures after 7 and 10 days in vitro, respectively. Corresponding figures for human TH-positive neurons were 90% and 145%. The influence of PDGF-BB was specific for TH-positive neurons and not a general trophic effect, since no change of either total cell number or metabolic activity was found. In PDGF-BB-treated cultures of human but not rat tissue the TH-positive neurons had longer neurites than observed in control or PDGF-AA-treated cultures. These data indicate that PDGF-BB may act as a trophic factor for mesencephalic dopaminergic neurons and suggest that administration of PDGF-BB could ameliorate degeneration and possibly promote axonal sprouting of these neurons in vivo.  相似文献   

7.
Excitotoxicities of glutamate and NMDA were studied on primary cultures of rat embryonic substantia nigra. The toxicity of the general neuronal population (identified with neuron specific enolase-NSE) was compared with that of dopaminergic neurons (identified with TH antibodies). We have shown that there exists a time-dependent toxicity to glutamate in 9 d old cultures in vitro and exposures as short as 5 min are significantly toxic. By comparing the effects of long time exposures (24 h) to NMDA and glutamate, we can show dose-dependent toxicity; however NMDA shows a less marked effect, especially at high doses (> 500-1000 microM) as opposed to less potent lower doses (< 500 microM). In comparison to the general population of NSE-positive mesencephalic neurons, TH-positive neurons seem to exhibit a similar vulnerability to EAA. The fact that TH-positive neurons are only partially protected against glutamate toxicity by the non-competitive NMDA antagonist TCP indicates that they are more susceptible to non-NMDA mediated neurotoxicity than the general neuronal population.  相似文献   

8.
The effect of Pb2+ was studied in embryonic mesencephalic primary cultures that contain neurons and glia. Pb2+ exposure in absence of serum, damaged more efficaciously the cultured cells than Pb2+ exposure in presence of serum. In serum-free medium, Pb2+ elicited mainly necrosis and apoptosis in maximally 13% of the cells in culture. The glial fibrillary acidic protein (GFAP) content was decreased by Pb2+ exposure in serum-containing medium. The abundance of GFAP was also decreased by serum deprivation that was augmented by the addition of 12.5 microM Pb2+ in serum-free medium. A 6h exposure to 6 microM Pb2+ in serum-free medium also lowered the low affinity 3H-D-aspartate uptake. A 6h exposure of mesencephalic cells to 3-25 microM Pb2+ in serum-free medium failed to alter the number of tyrosine hydroxylase- and calretinin-immunoreactive cells, whereas, 50 microM Pb2+ obliterated both cell types. A 6h exposure of cells to 3 microM Pb2+ in serum-free medium decreased 3H-dopamine uptake by 50 % and 12.5 microM Pb2+ obliterated it. Addition of albumin to serum-free medium failed to prevent the Pb2+ -elicited inhibition of [3H]-dopamine uptake suggesting that the serum-afforded delay of cell death may not be due to a removal of reactive Pb2+ by protein/chelate formation but rather to the Pb2+ -scavenging function of glial cells. Serum deprivation may exacerbate the Pb2+ -induced neurotoxicity presumably by impairing the metal scavenging function of astrocytes.  相似文献   

9.
Nitric oxide (NO) is implicated as a mediator of cell death in models of neurodegenerative disease. However, the precise role of NO in neuronal degeneration remains controversial. In the present study we employed 7-nitro indazole (7-NI), reportedly a selective inhibitor of neuronal nitric oxide synthase (nNOS) in vivo, to investigate the possible involvement of NO in quinolinic acid (QA)-induced striatal toxicity in the rat. Intrastriatal injection of QA (30 nmol) caused loss of NADPH diaphorase (48%), NOS (48%) and acetylcholinesterase (AChE; 22%) positive neurones and a loss of NOS activity (78%) in striatal homogenates. 7-NI (30 mg kg-1, i.p. every 4 h for 20 h) did not affect the loss of NADPH diaphorase (52%), NOS (52%) and AChE (16%) positive neurones or the loss of NOS activity (66%) in striatal homogenates. The present study does not support a role for NO in QA-induced striatal toxicity.  相似文献   

10.
11.
Transforming growth factor alpha messenger RNA and protein levels are highest in the striatum, the target area of mesencephalic dopaminergic neurons of the substantia nigra, suggesting a role as a target-derived neurotrophic factor for these cells. To test this hypothesis, we characterized the actions of transforming growth factor alpha on fetal rat dopaminergic neurons in culture. Transforming growth factor alpha promoted dopamine uptake in a dose- and time-dependent manner. Administration of transforming growth factor alpha at the time of plating for 2 h produced a significant increase in dopamine uptake after five days of growth in vitro. As cultures aged they became less responsive to transforming growth factor alpha, such that longer times of exposure were required to elicit a similar, but weaker, response. Dopaminergic cell survival was selectively promoted by transforming growth factor alpha, since there was an increase in the number of tyrosine hydroxylase-immunostained cells without a parallel increase in the total number of neuron-specific enolase-immunopositive cells. Neurite length, branch number and soma area of tyrosine hydroxylase-immunopositive cells also were enhanced by transforming growth factor alpha treatment. Increases in each of the dopaminergic parameters due to transforming growth factor alpha were accompanied by a rise in glial cell number, making it possible that these effects were mediated by this cell population. The neurotrophin antagonist, K252b, failed to inhibit the transforming growth factor alpha-induced increase in dopamine uptake, indicating that transforming growth factor alpha's effects were not mediated by neurotrophin mechanisms. The actions of transforming growth factor alpha on the differentiation of dopaminergic neurons only partially overlapped with those of epidermal growth factor. Thus, while transforming growth factor alpha and epidermal growth factor are believed to share the same receptor they differentially affect dopaminergic cell development in vitro. These results indicate that transforming growth factor alpha is a trophic factor for mesencephalic cells in culture and suggests that transforming growth factor alpha plays a physiological role in the development of these cells in vivo.  相似文献   

12.
The petrosal ganglion supplies chemoafferent pathways via the glossopharyngeal (IXth) nerve to peripheral targets which release various neurotransmitters including serotonin (5-HT). Here, we combined rapid 5-HT application with patch clamp, whole-cell recording to investigate whether 5-HT receptors are expressed on isolated petrosal neurons (PN), cultured from 7-12 day-old rat pups. In responsive cells, the dominant effect of 5-HT was a rapid depolarization associated with a conductance increase in approximately 43% of the neurons (53/123); however, in a minority population ( approximately 6%; 8/123), 5-HT caused membrane depolarization associated with a conductance decrease. In the former group, 5-HT produced a transient inward current (I5-HT) in neurons voltage-clamped near the resting potential ( approximately -60 mV); the effect was mimicked by the 5-HT3 receptor-specific agonist, 2-methyl-5-HT, suggesting it was mediated by 5-HT3 receptors. Further, I5-HT was selectively inhibited by the 5-HT3 receptor-specific antagonist MDL72222 (1-10 microM), but was unaffected by either 5-HT1/5-HT2 receptor antagonist, spiperone, or by 5-HT2 receptor-specific antagonist, ketanserin (50-100 microM). I5-HT displayed moderate inward rectification and had a mean reversal potential (+/-S.E.M.) of -4.3+/-6.6 mV (n=6). Application of 5-HT (dose range: 0.1-100 microM) produced a dose-response curve that was fitted by the Hill equation with EC50= approximately 3.4 microM and Hill coefficient= approximately 1.6 (n=8). The activation phase of I5-HT (10 microM 5-HT at -60 mV) was well fitted by a single exponential with mean (+/-S.E.M.) time constant of 45+/-30 ms (n=6). The desensitization phase of I5-HT was best fitted by a single exponential with mean (+/-S.E.M.) time constant of 660+/-167 ms (n=6). Fluctuation analysis yielded an apparent mean single-channel conductance (+/-S.E.M) of 2.7+/-1.5 pS (n=4) at -60 mV. In the minority ( approximately 6%) population of neurons which responded to 5-HT with a conductance decrease, the depolarization was blocked by the 5-HT2 receptor antagonist, ketanserin (50 microM). Taken together, these results suggest that 5-HT3 receptors are the major subtype expressed by rat petrosal neurons, and therefore are candidates for facilitating chemoafferent excitation in response to 5-HT released from peripheral targets.  相似文献   

13.
14.
A medium originally designed for lymphocyte growth promoted robust survival of olfactory receptor neurons (ORNs) in short-term (4-day), dissociated cell culture. The key ingredient for survival of neurons in both serum and serum-free conditions was 2-mercaptoethanol (2-ME). Enhancement of survival may be thiol-mediated because two other thiol compounds, 2-mercaptoethylamine and monothioglycerol, also increased ORN survival. Addition of 2-ME also significantly increased survival of embryonic cortical and hippocampal neurons in a serum-free medium, and embryonic cortical neurons in a serum-containing medium. After plating and growth in a serum-free medium containing 2-ME, survival of all three types of neurons was equivalent to, or greater than, survival in serum-containing media. Thus, thiols such as 2-ME promote the survival of multiple types of neurons in short-term cell culture.  相似文献   

15.
Evidence from both clinical studies and animal models suggests that the local anesthetic, lidocaine, is neurotoxic. However, the mechanism of lidocaine-induced toxicity is unknown. To test the hypothesis that toxicity results from a direct action of lidocaine on sensory neurons we performed in vitro histological, electrophysiological and fluorometrical experiments on isolated dorsal root ganglion (DRG) neurons from the adult rat. We observed lidocaine-induced neuronal death after a 4-min exposure of DRG neurons to lidocaine concentrations as low as 30 mM. Consistent with an excitotoxic mechanism of neurotoxicity, lidocaine depolarized DRG neurons at concentrations that induced cell death (EC50 = 14 mM). This depolarization occurred even though voltage-gated sodium currents and action potentials were blocked effectively at much lower concentrations. (EC50 values for lidocaine-induced block of tetrodotoxin-sensitive and -resistant voltage-gated sodium currents were 41 and 101 microM, respectively.) At concentrations similar to those that induced neurotoxicity and depolarization, lidocaine also induced an increase in the concentration of intracellular Ca++ ions ([Ca++]i; EC50 = 21 mM) via Ca++ influx through the plasma membrane as well as release of Ca++ from intracellular stores. Finally, lidocaine-induced neurotoxicity was attenuated significantly when lidocaine was applied in the presence of nominally Ca(++)-free bath solution to DRG neurons preloaded with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Our results indicate: 1) that lidocaine is neurotoxic to sensory neurons; 2) that toxicity results from a direct action on sensory neurons; and 3) that a lidocaine-induced increase in intracellular Ca++ is a mechanism of lidocaine-induced neuronal toxicity.  相似文献   

16.
A primary neuronal culture was prepared from the ventral mesencephalon, centered on the A8, A9 and A10 dopaminergic nuclei of the embryonic day 14 rat, and studied from 12 h to 28 days. At 12 h after plating, and before cell death ensued, 95% of the cells stained positive for neuron specific enolase; 20% for tyrosine hydroxylase; 5% for vimentin and < 0.1% for glial fibrillary acidic protein. In the presence of the mitotic inhibitor cytosine arabinoside (2.0 microM), neuronal growth and survival were surprisingly normal up to the ninth day in culture, but deteriorated rapidly thereafter. In the absence of a mitotic inhibitor, and in the presence of proliferating but non-confluent glia, the tyrosine hydroxylase positive neurons that survived to the 10th day, had retracted neurites and a rounded soma, suggesting an inhibition of cell development. Those tyrosine hydroxylase positive neurons that survived this adverse phase of development tended to produce elaborate neuritic profiles after the 11th day, coincident with confluence of the astrocyte monolayer at the 12th day. By the 21st day in culture, and persisting up to the 28th day, 60% (61 +/- 10, n = 20) of the surviving neurons stained positive for tyrosine hydroxylase. When plated on an established, ventral mesencephalic monolayer of astrocytes, at the seventh day in culture, neuritic growth and branching of the tyrosine hydroxylase positive neurons were greater, compared with similar neurons grown on poly-D-lysine, and the signs of arrested development (retraction of neurites and rounded soma) seen at the 10th day after plating on poly-D-lysine, were not observed. We conclude that in the primary culture studied, and under the experimental conditions used, the survival of dopaminergic neurons was independent of glia during the first nine days, and critically dependent on glia thereafter. The resurgence of growth of dopaminergic neurons after 10 days in vitro, and their subsequent selective survival in culture, suggest that confluent type-1 astrocytes produce factors that act selectively on the dopaminergic neuronal phenotype. The successful identification of these dopaminergic-specific, neurotrophic factors could lead to an increased understanding of the etiology of Parkinson's disease, and suggest new directions for therapeutic intervention.  相似文献   

17.
Dissociated primary cell cultures were derived from the cochlear nuclei (CN) of postnatal rats using standard techniques. Cultured cells differentiated morphologically, but their dendritic profiles were generally less specialized than those of CN cells in vivo. Physiologically, cultured cells could be divided into three classes: tonic, phasic and non-spiking cells, which differed in many of their fundamental biophysical properties. The percentage of cultured cells that spiked repetitively increased over time to a maximum of 85% at 6 days. However, the percentage of cells that produced action potentials decreased with time in culture, from 91% during the first 8 days to less than 40% after 9 days. CN cells were successfully cultured in both serum-supplemented and serum-free (Neurobasal) media. More neurons survived at low plating densities in Neurobasal than in medium containing serum, although neuronal survival was similar at higher densities. Few neurons raised in the serum-free medium were spontaneously active; other response properties were similar to those of cells grown in the presence of serum. Although differentiation of CN cells in culture did not completely mirror the in vivo developmental pattern, these experiments demonstrate that primary culture represents a viable method for the in vitro study of CN neurons.  相似文献   

18.
The aim of this study was to describe a reproducible method for the isolation, purification and primary culture of rat Kupffer cells. Kupffer cells were isolated following sequential pronase/collagenase digestion of the liver and enrichment of a non-parenchymal cell fraction by a single-density gradient centrifugation step using 30% metrizamide. Kupffer cells were isolated and further purified from this cell fraction by centrifugal elutriation. Kupffer cells were isolated at 1017 g at 48-110 mL/min. All Kupffer cell fractions exhibited phagocytosis of 3 microm latex beads. Kupffer cell fractions isolated at 48 and 60 mL/min were predominantly ED2 negative while later fractions (80-110 mL/min) were ED2 positive. Kupffer cells were adherent in culture after 2 h. This method for Kupffer cell isolation resulted in a yield of 80-120 x 10(6) Kupffer cells per liver.  相似文献   

19.
Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.  相似文献   

20.
Primary dissociated cultures of rhombencephalon were prepared from 5-9-week-old human fetuses. Half of some cultures were treated by two non-competitive N-methyl-D-aspartate antagonists, namely 1-(2-thienyl)cyclohexylpiperidine (TCP) and cis-Pip/Mel-[1-(2-thienyl)-2-methyl-cyclohexyl]piperidine (GK11) in negative enantiomeric form, which enhance the survival of human fetal central nervous system cells in culture. At different days in vitro, the treated and the control cultures were processed for immunocytochemical detection of serotonin-containing neurons which were studied by morphological and morphometric analysis. Statistical analysis showed that the surface of the stained neurons increased as a function of two parameters of time, the gestational age of the cells and the duration of the cultures. The complexity of the shape of the serotonin neurons characterized by the shape factor, the number of bifurcations and the morphological feature (bipolar or multipolar) was found to increase with the gestational age. It appears that the in vitro development of the embryonic cells which represents stages of maturation and differentiation can be specifically evaluated. Such an analysis of fetal central nervous system cells improves the knowledge of factors important in grafting experiments. We verified that the two drugs do not appreciably alter the in vitro development of the treated cells; thus they may be considered as promising drugs for human neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号