首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colony-stimulating factors (CSF) may play a role in bone resorption. To examine whether osteoblasts secrete colony-stimulating activity (CSA) in response to parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), conditioned medium (CM) from ROS 17/2.8 cells and primary rat osteoblasts were examined for induction of clonal growth of cultured rat bone marrow cells. Untreated cells constitutively secreted CSA, which increased with PTH and PTHrP treatment. The colonies formed were principally comprised of macrophages, and preincubation of CM with antiserum to murine macrophage colony-stimulating factor (M-CSF) neutralized most of the CSA, suggesting that the osteoblast-derived CSA was predominantly due to M-CSF. PTHrP treatment upregulated steady-state M-CSF mRNA levels. To investigate a paracrine role for M-CSF in bone we examined bone tissue and cells for the M-CSF receptor c-fms using immunohistochemical techniques and demonstrated staining of mature osteoclasts both in situ and after isolation. We conclude that M-CSF is responsible for the majority of the CSA released by PTH- and PTHrP-treated rat osteoblasts. In addition we identified CSF-1 receptor expression in mature osteoclasts. These data suggest that M-CSF is a mediator of osteoblast-osteoclast interaction in PTH- and PTHrP-induced bone resorption.  相似文献   

2.
The rat homeobox gene, rHox, was cloned from a rat osteosarcoma cDNA library. Southwestern and gel mobility shift analyses showed that rHox binds to the promoter regions of collagen (alpha1)I and osteocalcin genes while transient transfection with rHox resulted in repression of their respective promoter activities. In situ hybridization studies showed that rHox mRNA was widely expressed in osteoblasts, chondrocytes, skeletal muscle, skin epidermis, and bronchial and intestinal epithelial cells, as well as cardiac muscle in embryonic and newborn mice. However in 3-month-old mice, rHox mRNA expression was restricted to osteoblasts, megakaryocytes, and myocardium. Bone morphogenetic protein 2, a growth factor that commits mesenchymal progenitor cells to differentiate into osteoblasts, down-regulated rHox mRNA expression by 40-50% in UMR 201, a rat preosteoblast cell line, in a time- and dose-dependent manner. In contrast, PTH-related protein (PTHrP), recently shown to be a negative regulator of chondrocyte differentiation, significantly enhanced rHox mRNA expression in UMR 106-06 osteoblastic cells by 3-fold at 24 h while at the same time down-regulating expression of pro-alpha1(I) collagen mRNA by 60%. Expression of rHox mRNA in calvarial osteoblasts derived from PTHrP -/- mice was approximately 15% of that observed in similar cells obtained from normal mice. In conclusion, current evidence suggests that rHox acts as a negative regulator of osteoblast differentiation. Furthermore, down-regulation of rHox mRNA by bone morphogenetic protein 2 and its up-regulation by PTHrP support a role of the homeodomain protein, rHox, in osteoblast differentiation.  相似文献   

3.
PTH and PTH-related peptide (PTHrP) have been shown to bind to and activate the same PTH/PTHrP receptor. Recent studies have demonstrated, however, the presence of additional receptors specific for each ligand. We used the PTHrP and PTH/PTHrP receptor gene knock-out models to investigate whether this receptor mediates the actions of both ligands in bone. The similar phenotype of the PTHrP (-/-) and PTH/PTHrP receptor (-/-) animals in the growth plate of the tibia suggests that this receptor mediates the actions of PTHrP. Electron microscopic studies have confirmed the accelerated differentiation and disordered organization of chondrocytes, with the accumulation of large amounts of dispersed glycogen granules in the cytoplasm of proliferative and maturing cells of both genotypes. The contrasting growth plate mineralization patterns of the PTHrP (-/-) and PTH/PTHrP receptor (-/-) mice, however, suggest that the actions of PTHrP and the PTH/PTHrP receptor are not identical. Studies using calvariae from PTH/PTHrP receptor (-/-) embryos demonstrate that this receptor solely mediates the ability of PTH and PTHrP to stimulate adenylate cyclase in bone and to stimulate bone resorption. Furthermore, we show that osteoblasts of PTH/PTHrP receptor (-/-) animals, but not PTHrP (-/-) animals, have decreased levels of collagenase 3, osteopontin, and osteocalcin messenger RNAs. The PTH/PTHrP receptor, therefore, mediates distinct physiologic actions of both PTH and PTHrP.  相似文献   

4.
Expression of parathyroid hormone-related protein (PTHrP) messenger RNA (mRNA) and protein was investigated throughout the developmental progression of endochondral bone formation in mouse and intramembranous bone formation in an in vivo model in rabbit, using in situ hybridization and immunohistochemistry. Endochondral bone formation was investigated in a developing embryo, newborn, and adult mouse. In fetal long bones through to newborn (day 7), PTHrP mRNA and protein were consistently expressed in chondrocytes within the proliferative, transitional, and hypertrophic zones. In addition, high levels of PTHrP were also detected in osteoblasts on the surface of trabecular bone surfaces. Similarly, at the adult stage (week 7), PTHrP mRNA and protein were consistently expressed in chondrocytes at epiphyseal ends of the subarticular cartilage, within cortical periosteum, as well as in osteoblasts located at the metaphyseal trabecular bone surfaces. Using an in vivo intramembranous bone formation model in rabbits, expression of PTHrP mRNA and protein was demonstrated in preosteoblasts prior to trabecular bone formation (1-week bone harvest). As bone formed (2-, 3-, and 4-week bone tissue harvests), PTHrP mRNA and protein were highly expressed in actively synthesizing osteoblasts and in those osteocytes embedded within the superficial layers of the bone matrix. Lining osteoblasts and osteocytes buried deeply in the bone matrix displayed weak or no signal for PTHrP. The pattern of spatial and temporal expression of PTHrP demonstrated in cartilage cells and osteoblasts in the two systems suggests an important role of PTHrP in both endochondral and intramembranous bone formation.  相似文献   

5.
During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (-/-) cells, and analyzed cell-cell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.  相似文献   

6.
7.
Using in situ hybridization we show that expression of the c-fos oncogene, a gene normally associated with osteosarcomas, is greatly elevated in osteoclasts of patients with Paget's disease. Immunohistochemical staining with c-fos antibodies also shows increased protein in pagetic osteoclasts. In light of transgenic mouse experiments showing a key role for c-fos in bone resorption, we propose that elevated c-fos gene expression in pagetic osteoclasts is an important component in producing the pagetic phenotype. Levels of c-fos gene and protein expression in pagetic osteoblasts are lower than those detected in osteoclasts but still higher than in nonpagetic osteoblasts. This may provide an explanation for the increased incidence of osteosarcomas in patients with Paget's disease because overexpression of c-fos in osteoblasts of transgenic mice induces osteosarcoma formation.  相似文献   

8.
Mice in which the genes encoding the parathyroid hormone (PTH)-related peptide (PTHrP) or the PTH/PTHrP receptor have been ablated by homologous recombination show skeletal dysplasia due to accelerated endochondral bone formation, and die at birth or in utero, respectively. Skeletal abnormalities due to decelerated chondrocyte maturation are observed in transgenic mice where PTHrP expression is targeted to the growth plate, and in patients with Jansen metaphyseal chondrodysplasia, a rare genetic disorder caused by constitutively active PTH/PTHrP receptors. These and other findings thus indicate that PTHrP and its receptor are essential for chondrocyte differentiation. To further explore the role of the PTH/PTHrP receptor in this process, we generated transgenic mice in which expression of a constitutively active receptor, HKrk-H223R, was targeted to the growth plate by the rat alpha1 (II) collagen promoter. Two major goals were pursued: (i) to investigate how constitutively active PTH/PTHrP receptors affect the program of chondrocyte maturation; and (ii) to determine whether expression of the mutant receptor would correct the severe growth plate abnormalities of PTHrP-ablated mice (PTHrP-/-). The targeted expression of constitutively active PTH/PTHrP receptors led to delayed mineralization, decelerated conversion of proliferative chondrocytes into hypertrophic cells in skeletal segments that are formed by the endochondral process, and prolonged presence of hypertrophic chondrocytes with delay of vascular invasion. Furthermore, it corrected at birth the growth plate abnormalities of PTHrP-/- mice and allowed their prolonged survival. "Rescued" animals lacked tooth eruption and showed premature epiphyseal closure, indicating that both processes involve PTHrP. These findings suggest that rescued PTHrP-/- mice may gain considerable importance for studying the diverse, possibly tissue-specific role(s) of PTHrP in postnatal development.  相似文献   

9.
10.
11.
Recent work has shown that nitric oxide (NO) acts as an important mediator of the effects of proinflammatory cytokines and mechanical strain in bone. Although several bone-derived cells have been shown to produce NO in vitro, less is known about the isoforms of NO synthase (NOS), which are expressed in bone or their cellular distribution. Here we investigated the expression, cellular localization, and regulation of NOS mRNA and protein in cultured bone-derived cells and in bone tissue sections. We failed to detect inducible NOS (iNOS) protein in normal bone using immunohistochemical techniques, even though low levels of iNOS mRNA were detected by sensitive reverse transcribed polymerase chain reaction (RT-PCR) assays in RNA extracted from whole bone samples. Cytokine stimulation of bone-derived cells and bone explant cultures caused dramatic induction of iNOS mRNA and protein in osteoblasts and bone marrow macrophages, but no evidence of iNOS expression was seen in osteoclasts by immunohistochemistry or in situ hybridization. Endothelial NOS (ecNOS) mRNA was also detected by RT-PCR in whole bone, and immunohistochemical studies showed widespread ecNOS expression in bone marrow cells and trabecular lining cells in vivo. Related studies in vitro confirmed that ecNOS was expressed in cultured osteoblasts, stromal cells, and osteoclasts. Neuronal NOS mRNA was detected by RT-PCR in whole bone, but we were unable to detect nNOS protein in bone cells in vivo or in studies of cultured bone-derived cells in vitro. In summary, our data show that mRNAs for all three NOS isoforms are expressed in bone and provide evidence for differential expression and regulation of the enzymes in different cell types. These findings confirm the likely importance of the L-arginine-NO pathway as a physiological mediator of bone cell function and demonstrate that it may be possible to exert differential effects on osteoblast and osteoclast activity in vivo by differential targeting of constitutive and inducible NOS isoforms by selective NOS inhibitors.  相似文献   

12.
Parathyroid hormone-related protein is required for tooth eruption   总被引:1,自引:0,他引:1  
Parathyroid hormone (PTH)-related protein (PTHrP)-knockout mice die at birth with a chondrodystrophic phenotype characterized by premature chondrocyte differentiation and accelerated bone formation, whereas overexpression of PTHrP in the chondrocytes of transgenic mice produces a delay in chondrocyte maturation and endochondral ossification. Replacement of PTHrP expression in the chondrocytes of PTHrP-knockout mice using a procollagen II-driven transgene results in the correction of the lethal skeletal abnormalities and generates animals that are effectively PTHrP-null in all sites other than cartilage. These rescued PTHrP-knockout mice survive to at least 6 months of age but are small in stature and display a number of developmental defects, including cranial chondrodystrophy and a failure of tooth eruption. Teeth appear to develop normally but become trapped by the surrounding bone and undergo progressive impaction. Localization of PTHrP mRNA during normal tooth development by in situ hybridization reveals increasing levels of expression in the enamel epithelium before the formation of the eruption pathway. The type I PTH/PTHrP receptor is expressed in both the adjacent dental mesenchyme and in the alveolar bone. The replacement of PTHrP expression in the enamel epithelium with a keratin 14-driven transgene corrects the defect in bone resorption and restores the normal program of tooth eruption. PTHrP therefore represents an essential signal in the formation of the eruption pathway.  相似文献   

13.
Thyroid hormones influence growth and differentiation of bone cells. In vivo and in vitro data indicate their importance for development and maintenance of the skeleton. Triiodothyronine (T3) inhibits proliferation and accelerates differentiation of osteoblasts. We studied the regulatory effect of T3 on markers of proliferation as well as on specific markers of the osteoblastic phenotype in cultured MC3T3-E1 cells at different time points. In parallel to the inhibitory effect on proliferation, T3 down-regulated histone H4 mRNA expression. Early genes (c-fos/c-jun) are highly expressed in proliferating cells and are down-regulated when the cells switch to differentiation. When MC3T3-E1 cells are cultured under serum-free conditions, basal c-fos/c-jun expressions are nearly undetectable. Under these conditions, c-fos/c-jun mRNAs can be stimulated by EGF, the effect of which is attenuated to about 46% by T3. In addition, T3 stimulated the expression at the mRNA and protein level of osteocalcin, a marker of mature osteoblasts and alkaline phosphatase activity. All these effects were more pronounced when cells were cultured for more than 6 days. These data indicate that T3 acts as a differentiation factor in osteoblasts by influencing the expression of cell cycle-regulated, of cell growth-regulated, and of phenotypic genes.  相似文献   

14.
15.
OBJECTIVE: Parathyroid hormone (PTH) induced bone resorption by osteoclasts depends on the presence of osteoblasts. PTH induced production of prostaglandins by osteoblasts and induction of bone resorption by prostaglandins suggest that these autacoids may be implicated in the effects of PTH on bone. Our objective was to determine if the increase in prostaglandin production induced in human osteoblasts by PTH is due to an increase in cyclooxygenase-2 (COX-2) expression. METHODS: Primary cultures of human osteoblasts were obtained from specimens of trabecular bone. Confluent cells were treated with PTH, dexamethasone or compound NS-398, a specific COX-2 inhibitor. The concentration of prostaglandin E2 (PGE2) in the supernatants was determined by radioimmunoassay and COX-2 mRNA levels evaluated by Northern blot. RESULTS: PTH induced COX-2 mRNA expression and PGE2 production. These effects were time and concentration dependent and were inhibited by dexamethasone. Compound NS-398 reduced PGE2 production to the same extent as dexamethasone, and neither compound had an additive effect on this variable. CONCLUSION: These results show that PTH induces COX-2 expression in human osteoblasts in culture and suggest that this isoenzyme is the main factor in the control of prostaglandin synthesis in these experimental conditions.  相似文献   

16.
Osteoblasts synthesize and mineralize bone matrix and are principal target cells for parathyroid hormone (PTH). The type 1 PTH/PTH-related protein (PTHrP) receptor (PTH1R), cloned from rat osteoblastic cells, activates multiple intracellular signaling mechanisms. The specific roles of these PTH1R signals, or of responses to other types of PTH receptors that may be expressed, in regulating osteoblast function are incompletely understood. Use of established mammalian osteoblastic cell lines has led to much understanding of PTH action in bone, although such cells are of neoplastic origin or have other characteristics that compromise their validity as models of normal osteoblasts. To examine the role of the PTH1R in osteoblast biology, we have isolated a series of clonal murine calvarial osteoblastic cell lines that are only conditionally immortalized, via expression of a transgene encoding the tsA58 temperature-sensitive SV40 large T antigen, and that lack both functional alleles of the PTH1R gene. When cultured under nontransforming conditions, these cells stopped proliferating, expressed a series of characteristic osteoblastic genes (including the nonfunctional remnant of the PTH1R gene), and, after 3-4 weeks, produced mineralized bone nodules in a manner that was regulated by 1,25-dihydroxyvitamin D3 but not by PTH(1-84). Cyclic AMP measurements revealed no evidence of expression of alternate species of Gs-linked PTH receptors. Stable transfection with PTH1R cDNA reconstituted both PTH binding and adenylyl cyclase activation, increased basal osteocalcin expression, and supported PTH stimulation of c-Fos expression and matrix mineralization. These conditionally transformed, PTH1R(-/-) clonal osteoblastic cell lines should prove useful for studies of the regulation of osteoblast differentiation and function by both endogenous nonclassical species of PTH (or PTHrP) receptors and mutant signal-selective PTH1Rs.  相似文献   

17.
18.
19.
20.
Increased production of PTH-related protein (PTHrP) and PTH is frequently responsible for hypercalcemia and its associated morbidity. However, it is unclear whether these peptides produce identical effects on cells in the osteoclast lineage in vivo. To examine the effects of continuous in vivo exposure to these factors on both the osteoclast precursors and mature osteoclasts, we inoculated Chinese hamster ovarian cells expressing PTH-(1-84), PTHrP-(1-141), or nontransfected Chinese hamster ovarian cells into nude mice. The effects of these tumors on blood ionized calcium, plasma PTH and PTHrP concentrations, and osteoclast formation were then determined. PTH and PTHrP tumor-bearing mice became hypercalcemic (1.90 +/- 0.04 and 1.97 +/- 0.16 mmol/liter, respectively) compared with control mice (1.29 +/- 0.015 mmol/liter). After 4 days of hypercalcemia, mice were killed, and bone marrow cells were harvested to examine cells at three discrete stages of osteoclast development: multipotent osteoclast precursors, the granulocyte/macrophage colony-forming unit; more committed marrow mononuclear osteoclast precursors; and mature osteoclasts. Neither PTH nor PTHrP had an effect on granulocyte/macrophage colony-forming unit, but similarly increased the number of more committed mononuclear osteoclast progenitors as well as mature osteoclasts in the calvaria. No differences were detected between the effects of PTH and PTHrP on cells in the osteoclast lineage in vivo. Thus, PTH and PTHrP appear to affect only more differentiated cells in the osteoclast lineage, and the differences in osteoclastic bone resorption between primary hyperparathyroidism and humoral hypercalcemia of malignancy are probably due to mechanisms other than effects on osteoclast precursor cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号