首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
在含有丙三醇的硅酸盐体系中,通过微弧氧化法在AZ31B镁合金表面获得了细致均匀微孔的氧化膜。以SEM、电化学工作站和测厚仪为表征手段,利用单因素法分别考察了恒压模式下电压、频率、占空比对氧化膜结构、耐蚀性及厚度的影响。结果表明:随电压的增加,氧化膜的表面微孔尺寸和厚度均增大,但膜层耐蚀性能先增加后降低;随频率的增加,膜表面微孔尺寸减小,耐蚀性能增大,但频率改变对膜层的厚度影响较小;当占空比>45%时,膜层的表面微孔尺寸及厚度有增大趋势,膜层表面出现击穿破坏而导致耐蚀性能降低。优化的电参数为:电压230~260 V,频率300~500 Hz,占空比30%~45%。  相似文献   

2.
研究硅酸盐体系中电压、频率和占空比等电参数对AZ91D镁合金微弧氧化膜层的厚度、表面形貌、相组成及耐蚀性的影响,并对膜层的表面孔隙率及表面孔径进行定量分析。结果表明:电压对膜层微观结构及耐蚀性能的影响起主导作用,频率的影响次之,占空比的影响较小;随电压升高,膜层厚度、表面孔隙率及耐蚀性均增大;频率与占空比对膜层厚度的影响不大,但对表面孔隙率和耐蚀性有一定的影响;频率为800Hz、占空比为15%时,膜层耐蚀性较好,此时所得膜层的表面孔隙率较小,分别约为8%和10%,膜层表面上孔径在1~3μm的微孔比例都大于60%;膜层表面孔径和孔隙率的定量评价与膜层形貌分析相结合可为膜层耐蚀性的分析提供有力依据。  相似文献   

3.
电参数对镁合金微弧氧化膜厚度的影响   总被引:1,自引:0,他引:1  
在自行研制的电解液中,采用四因素三水平正交实验,系统研究频率、占空比、电流密度和终电压对AZ91HP镁合金氧化膜厚度的影响。结果表明,各因素的主次顺序为终电压〉电流密度〉占空比〉频率。终电压对氧化膜厚度影响显著,电流密度对氧化膜厚度有影响但不显著,占空比和频率对氧化膜厚度无显著影响。氧化膜层的耐蚀性并不是仅仅由厚度决定,而是由多种因素综合作用的结果。  相似文献   

4.
能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响   总被引:17,自引:0,他引:17  
用自制的微弧氧化控制电源研究了在硅酸盐溶液体系中电流密度、频率、占空比等能量参数对镁合金微弧氧化陶瓷层的厚度及耐蚀性的影响,并优化了微弧氧化工艺.结果表明:随电流密度增加,陶瓷层厚度呈现线性增加,而耐蚀性表现出先增后减的趋势,在电流密度为3 A/dm2~4 A/dm2时,陶瓷层的耐蚀性最佳;恒流微弧氧化方式下频率与占空比对陶瓷层的厚度影响不大,但对其耐蚀性有一定影响,随频率增加,陶瓷层的耐蚀性越来越好,随占空比增大,陶瓷层的耐蚀性逐渐变差;工艺参数优化所制得陶瓷层的耐蚀性较参数恒定控制有一定的提高.  相似文献   

5.
《铸造技术》2015,(9):2248-2251
在硅酸盐体系中,采用恒压模式对高稀土镁合金进行微弧氧化获得陶瓷膜防护涂层。通过正交试验,以陶瓷膜的耐腐蚀性和腐蚀电流密度为评价指标,对硅酸盐体系电参数工艺进行了研究,得到最佳电参数工艺为:频率800 Hz,正电压为500 V,负电压为250 V,占空比为20%,氧化时间为15 min,其中正电压对微弧氧化膜的影响程度最大。用扫描电镜分析了最佳工艺参数下的表面形貌和腐蚀后的表面形貌。结果表明:采用双极性非对称脉冲电源所得到的微弧氧化膜表面形貌只存在显微孔而不存在微裂纹,在腐蚀过程中点蚀拓展阻力比较大,提高了耐蚀性。  相似文献   

6.
镁合金微弧氧化陶瓷层的耐蚀性   总被引:42,自引:7,他引:42  
通过NaCl中性盐雾腐蚀试验定性地分析镁合金微弧氧化陶瓷层的耐蚀性,初步研究了陶瓷层表面微观结构对其耐蚀性的影响。结果表明:镁合金微弧氧化陶瓷层的微观组织结构的结合方式和生长方式直接影响其耐蚀性,微弧氧化试样的耐蚀性与陶瓷的厚度有关,陶瓷层厚度的增加并不一定能使其耐蚀性提高。  相似文献   

7.
终止电压对MB8镁合金微弧氧化膜耐蚀性的影响   总被引:2,自引:0,他引:2  
采用SEM、XRD、动电位极化曲线及电化学阻抗等测试方法,研究了MB8镁合金微弧氧化过程中不同终止电压下获得的陶瓷膜层的耐蚀性能.结果表明:终止电压越高,膜层越厚;微火花阶段,膜层表面均匀、结晶细致,腐蚀电流密度较小,阻抗较大;弧放电阶段,膜层孔径变大,陶瓷层内显微缺陷增多,腐蚀电流密度增大,阻抗减小.由此得出结论:膜层耐蚀性能由膜层厚度与终止电压共同决定,微火花放电末期膜层的耐蚀性能优于弧放电阶段的耐蚀性能.  相似文献   

8.
AZ91D镁合金微弧氧化电参数对其耐蚀性的影响   总被引:1,自引:2,他引:1  
在铝酸盐体系中对AZ91D镁合金进行微弧氧化处理。利用田口式实验设计法探讨微弧氧化过程电参数对膜层耐蚀性的影响,确定了最佳工艺参数为:电压180V,氧化时间30min,频率50Hz,占空比30%。用交流阻抗分析膜层的耐腐蚀性能,结果表明:最佳工艺条件下所制备微弧氧化,膜层电阻比镁合金基体提高了2个数量级,耐蚀性有所增强。  相似文献   

9.
AZ91D镁合金微弧氧化膜耐蚀性的试验研究   总被引:6,自引:0,他引:6  
研究了AZ91D镁合金微弧氧化膜在复合铝酸盐溶液中的耐蚀性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了AZ91D镁合金微弧氧化膜的物相和表面形貌;利用IM6e型电化学工作站测量了氧化膜的电化学阻抗和稳态电流/电位极化曲线;利用CMB-1501B型便携式瞬时腐蚀速度测量仪测量了氧化膜的腐蚀电流密度Icorr和年腐蚀深度MMA。试验结果表明,微弧氧化的镁合金耐蚀性提高了2~3个数量级,镁合金微弧氧化膜主要由MgO、MgAl2O4、Al12Mg17组成。  相似文献   

10.
电流密度对镁合金微弧氧化膜层性能的影响   总被引:1,自引:0,他引:1  
在电流密度分别为3、6、9、12 A/dm2时,用微弧氧化的方法在碱性电解液体系中制备了镁合金微弧氧化膜,考察了不同电流密度对生成的氧化膜层厚度、硬度的影响规律;用XRD分析了氧化膜层的相结构;并采用NaCl溶液浸泡试验和中性盐雾试验,考察了氧化膜的耐蚀性能。结果显示:随着电流密度的增大,膜层的厚度、硬度均呈增加的趋势;陶瓷层主要由MgO、Mg2SiO4和非晶相组成;得到的氧化膜层具有优良的耐蚀性能。  相似文献   

11.
目的 通过在微弧氧化膜上原位生长水滑石膜,提高镁合金的耐蚀性.方法 首先分别在硅酸盐、磷酸盐和铝酸盐为主的电解液体系中制备镁合金微弧氧化膜.然后采用水热处理技术,通过加入硝酸铝与硝酸锌的混合溶液,制备微弧氧化/水滑石复合膜层.采用扫描电镜、X射线衍射仪、接触角仪和电化学腐蚀试验,分别研究了微弧氧化及复合膜层的显微形貌、...  相似文献   

12.
在微弧氧化电解液中引入了KOH添加剂,并在镁合金表面制备了陶瓷膜层,研究了KOH浓度对微弧氧化过程中的膜层生长及膜层耐腐蚀性能的影响。结果表明:在镁合金微弧氧化电解液中引入KOH添加剂可以有效降低微弧氧化过程的起弧电压和工作电压,但是KOH浓度过高会使起弧电压增大;KOH的引入会使膜层中的大尺寸孔隙数目减少,孔隙率提高。为了得到较高的膜层生长速率和较好的耐蚀性,电解液中的KOH剂量以1~3 g/L为宜。  相似文献   

13.
国泰榕  卢小鹏  李岩  张涛  王福会 《表面技术》2021,50(9):278-285, 310
目的 为进一步提高镁稀土合金微弧氧化涂层的耐蚀性能.方法 首先在镁稀土合金表面制备了微弧氧化涂层,随后用磷酸盐后处理溶液,对Mg-Gd-Y合金硅酸盐微弧氧化涂层进行了封孔后处理,并在此过程中添加了缓蚀剂.利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对涂层表面形貌和成分进行分析,利用极化曲线和电化学阻抗(EIS)测试了涂层的耐蚀性能.结果 后处理能够在微弧氧化涂层表面形成MgHPO4沉积层,沉积层的产生有效地封闭了微弧氧化涂层表面的微孔、裂纹等缺陷.缓蚀剂的添加显著增加了沉积物的量,使涂层的磷元素原子数分数由5.37%增加至14.90%,沉积效果显著.极化实验证明,封孔后处理涂层的腐蚀电流密度由1.51×10–7 A/cm2降至4.91×10–8 A/cm2,负载缓蚀剂后,涂层的腐蚀电流密度进一步降低至5.76×10–9 A/cm2,表明其耐蚀性能显著提高.微弧氧化涂层在3.5%NaCl溶液中浸泡384 h后,含缓蚀剂的涂层的总阻抗值可达7825.3?·cm2,明显高于未封孔处理的微弧氧化涂层(403?·cm2),这证明,后处理可有效提高微弧氧化涂层的耐蚀性能.结论 磷酸盐后处理能够在微弧氧化涂层表面生成MgHPO4沉积层,有效地对微弧氧化涂层表面的微孔和微裂纹进行了封闭.缓蚀剂的添加能够显著增强磷酸盐的沉积效果,使涂层的耐蚀性能在后处理的基础上进一步提高.  相似文献   

14.
采用磷酸盐、硅酸盐电解液体系对ZIRLO合金进行微弧氧化处理。利用XRD、SEM、TEM等研究陶瓷层的相组成、表面形貌、截面组织。结果表明:在磷酸盐电解液体系、硅酸盐电解液体系中制备的陶瓷层主要由m-ZrO2组成,磷酸盐电解液体系制备的陶瓷层内表面较硅酸盐电解液体系制备的陶瓷层更致密。在硅酸盐电解液体系中微弧氧化的样品靠近陶瓷层/金属界面基体一侧存在少量β-Zr。采用静态高压釜腐蚀实验研究了ZIRLO合金及D(磷酸盐电解液体系微弧氧化)样品和E(硅酸盐电解液体系微弧氧化)样品在360 ℃/18.6 MPa去离子水中及360 ℃/18.6 MPa 0.01 M LiOH水溶液中的耐腐蚀性能。在360 ℃/18.6 MPa去离子水中腐蚀至250 d时,D和E样品耐腐蚀性能相接近,均优于未经微弧氧化处理的ZIRLO合金样品;在360 ℃/18.6 MPa 0.01 M LiOH水溶液中腐蚀至246 d时,D和E样品的耐腐蚀性能与未经微弧氧化处理的ZIRLO合金样品耐腐蚀性能接近甚至有有害的影响。随着腐蚀时间的延长,微弧氧化对ZIRLO合金耐腐蚀性能提升有限。  相似文献   

15.
采用恒流模式,通过单变量实验改变电解液中乙酸钙、六偏磷酸钠和磷酸二氢钠等钙磷组分的浓度,在AZ31镁合金表面制备微弧氧化生物陶瓷膜,观察分析膜层微观组织结构,测定膜层表面Ca/P比、耐蚀性等,探讨钙磷组分及其浓度对膜层组织和性能的影响,进而对电解液进行优化,并对优化后的膜层性能进行观察和分析。结果表明:乙酸钙、六偏磷酸钠、磷酸二氢钠对膜层Ca、P元素含量及Ca/P比值有决定作用;乙酸钙浓度越高,膜层厚度越小,但是均一性越好;六偏磷酸钠浓度对膜层表面形貌和厚度几乎无影响,其浓度越高,膜层中P元素含量越高;磷酸二氢钠浓度越高,Ca/P比值越小。电解液优化后,制备的膜层较为平整致密,表面均匀分布10.7μm左右的微孔,但存在微裂纹;膜层主要由MgO、Mg和少量Ca2P2O7、SiO2等物相组成,使硬度和耐蚀性比镁合金基体有明显提高;膜层粗糙度Ra=0.45μm,润湿角为42.65°,有利于细胞的附着与生长。  相似文献   

16.
目的同时改善镁合金的耐腐蚀和耐磨损性能。方法将镁合金表面进行羟基化处理,依次在1,2-双(三乙氧基硅基)乙烷(BTSE)和氧化石墨烯(GO)溶液中浸渍,反复进行,得到一定层数的自组装涂层。通过扫描电子显微镜(SEM)、能谱仪(EDS)表征自组装涂层的形貌和组成。通过电化学测试、摩擦磨损实验,研究涂层对镁合金耐腐蚀、耐磨损性能的影响,并通过扫描电子显微镜、光学显微镜(OM)和表面轮廓仪,对磨痕形貌、深度和宽度进行了分析。结果自组装涂层表面有氧化石墨烯的层片状结构,最外层的双硅烷分子层将底层完全覆盖,涂层具有较好的致密性和完整性。由极化曲线可得,GO/BTSE涂层将镁基底的腐蚀速率由1.45×10~(-1)mm/a减小到1.43×10~(-2)mm/a,降低了一个数量级。电化学阻抗谱的等效电路拟合结果表明,GO/BTSE涂层将裸镁合金的电荷转移电阻由562.2Ω·cm~2增大到1559Ω·cm~2。另外,磨损实验结果表明,镁合金具有较大的摩擦系数,在0.32~0.42范围内波动。涂覆GO/BTSE后,样品的摩擦系数明显降低,在0.20~0.23范围内波动。自组装涂层有效降低了基底合金的磨损率,由3.51×10~(-3)mm~3/(N×m)减小到3.24×10~(-5)mm~3/(N×m)。结论双硅烷和氧化石墨烯之间通过氢键连接,能够有效提高层片之间的结合力,使涂层致密,并且能够显著改善镁合金的耐蚀和耐磨性。  相似文献   

17.
在磷酸盐电解液体系中,利用微弧氧化技术在Zr702合金表面原位生长了陶瓷膜,通过扫描电镜、X射线衍射和电化学分析等方法研究了陶瓷膜的表面形貌特征、组织结构及耐腐蚀性能.结果表明:在磷酸盐电解液体系中形成的微弧氧化陶瓷膜主要由单斜氧化锆(m-ZrO2)和四方氧化锆(t-ZrO2)相组成,膜层表面较为致密、平整;腐蚀试验表明:与锫合金相比,经过微弧氧化处理,合金的腐蚀电位上升,腐蚀电流密度下降,表明微弧氧化后合金的抗腐蚀能力得到较大提高.  相似文献   

18.
朱鼎  章晓波 《表面技术》2020,49(7):53-59
目的通过在电解液中添加石墨,提高Mg-9Gd-1Zn-0.4Zr(GZ91K)镁合金微弧氧化膜层的耐蚀性能。方法通过微弧氧化法,在GZ91K镁合金表面制备含和不含石墨的微弧氧化膜层。利用扫描电镜(SEM)和能谱仪(EDS)、X射线衍射仪(XRD)、电化学工作站、浸泡实验等手段,研究膜层的形貌、成分、物相和耐蚀性能。结果含石墨膜层较不含石墨膜层更加致密,孔洞更加细小。含石墨膜层主要由Mg、O、C、Si、P、Gd等成分组成,相比不含石墨膜层,除了C以外,成分变化不大。含和不含石墨膜层的物相均主要由MgO和Mg_2SiO_4等组成。随着电解液中石墨浓度的增加,膜层的耐蚀性能相应提高。添加5g/L石墨制备的试样具有最佳的耐蚀性能,腐蚀电流密度仅为9.8×10~(–9) A/cm~2,相比未添加石墨试样的耐蚀性能提高了500倍。模拟体液浸泡实验显示,含石墨量越高的试样具有越低的析氢量,添加5 g/L石墨制备的试样析氢量最低。结论在0~5 g/L添加量范围内,石墨浓度越高,石墨颗粒越容易堵塞和切断膜层中的部分孔洞,并阻碍腐蚀性液体与基体接触,从而显著提高镁合金的耐蚀性能。  相似文献   

19.
镁锂合金表面耐蚀微弧氧化膜的研究   总被引:1,自引:0,他引:1  
利用微弧氧化技术在镁锂合金的表面成功制备了微弧氧化膜.利用SEM、XRD、XPS、动电位极化和电化学交流阻抗谱对微弧氧化膜结构、相组成以及耐蚀性能进行了研究.SEM观测结果表明,氧化膜层的结构是由疏松层和致密层组成的双层结构,微弧氧化膜表面存在大量直径约2~7 μm的微孔.XRD和XPS分析表明,微弧氧化膜的主要相组成为方镁石氧化镁和无定形磷酸盐化合物.动电位极化曲线以及电化学交流阻抗谱分析表明,微弧氧化处理后镁锂合金的耐蚀性能得到显著提高.  相似文献   

20.
目的 提高镁合金基体的耐蚀性能.方法 采用微弧氧化工艺对镁合金进行预处理,再通过自组装技术处理,在镁合金表面制备微弧氧化/十六烷基三甲氧基硅烷自组装复合膜层.通过SEM、EDS对复合膜的微观组织结构进行分析,并通过XPS、拉曼光谱分析了复合膜的表面成分,利用电化学阻抗谱、极化曲线、盐雾实验和浸泡实验检测了复合膜层的耐腐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号