共查询到20条相似文献,搜索用时 62 毫秒
1.
采用粒子群优化算法的无人机实时航迹规划 总被引:1,自引:0,他引:1
战场环境是动态变化的,很难预先获得全局精确的威胁信息,因此需要无人机具备一定的实时航迹规划能力.采用连续型粒子群优化(PSO)算法进行无人机参考航迹的实时规划,以最大转弯半径、步进、最短距离和回避威胁作为适应度函数的评价指标,得到代表最优航路的离散点.对算法进行了相应的仿真,结果表明该方法费时短,占用内存少,可以满足在线实时航迹规划的要求. 相似文献
2.
针对传统粒子群(Particle Swarm Optimization, PSO)算法在航迹规划的过程中需要根据无人机性能建立约束条件和易陷入局部最优值的缺点,提出了一种结合天牛须(Beetle Antennae Search, BAS)算法的球坐标PSO算法。该改进算法直接利用球坐标系对无人机的航向角和俯仰角进行约束,并且通过BAS算法避免PSO算法陷入局部最优值。根据数字高程地图建立仿真环境,综合考虑航迹长度、平滑度和危险性等因素构建目标函数。仿真结果表明,改进后的算法与其他PSO算法相比,规划的三维航迹质量更高,能够很好地适应无人机在各种环境下的飞行要求。 相似文献
3.
4.
5.
6.
7.
采用粒子群优化算法规划无人机侦察航路 总被引:4,自引:0,他引:4
研究了粒子群优化算法,提出了将该算法运用于无人机的航路规划.引入交换指数和变异子的概念,解决了算法的局部极值问题,给出了航路规划的方法和步骤.在Matlab仿真环境下得到了参考航路.结果表明,该算法简单有效,在很大程度上提高了无人机的侦察效率. 相似文献
8.
9.
针对多无人机多目标航迹路径规划中容易陷入局部最优,机间碰撞以及时效低等问题.提出一种多无人机多目标下改进的粒子群算法(Multi UAV Multi-Objective Improved Particle Swarm Optimization, MUMOIPSO).该方法将改进的粒子群算法与Dubins算法相结合.首先,通过目标置换以及粒子交叉等方法对粒子群算法中速度和位置更新方式进行改进;通过将自身速度引起位置变化的目标进行置换操作,将个体极值和全局极值影响自身位置变化的粒子进行交叉操作,使改进的粒子群算法适合多无人机多目标航迹路径规划.其次,应用反正切函数改进惯性因子,线性递减函数改进非负的加速度系数,在前期提高无人机全局搜索能力,在后期提高无人机局部搜索能力避免陷入局部最优.最后,采用Dubins算法结合Intersection Type方法规划出一条无碰撞的平滑路径.仿真结果表明,所提出的算法在保证良好稳定性的前提下,其搜索效果与路径规划方式更优,较对比其他算法在适应度函数和总航程方面分别提高16.3%和10.2%. 相似文献
10.
针对多无人机协同搜索多运动目标航迹优化问题,建立基于搜索概率图的信息环境模型,提出了一种基于人工势场与自适应参数调整粒子群优化的搜索算法(APF-APSO算法),用于不确定环境中的动态目标搜索。利用人工势场中无人机与山体之间、无人机之间的虚拟排斥力进行有效避障,以及无人机与目标之间的虚拟吸引力加快目标搜索;通过非线性的指数函数参数调整法对粒子群参数进行调整,并根据无人机搜索过程中得到的栅格单元信息确定度和目标存在概率对搜索概率图进行实时更新,来引导无人机对目标进行搜索。仿真结果表明,与其他算法相比,所提算法在搜索目标方面具有很大的优势,缩短了路径长度;避免了陷入局部最优解,具有较好的收敛性;能够有效地实现多无人机之间的协同搜索,提高了搜索效率。 相似文献
11.
12.
航迹规划对UAV完成任务具有重要的意义。为解决突发威胁下的UAV航迹规划问题,根据Voronoi图的局域动态特性提出了一种基于改进蚁群算法的实时重规划方法。采用全新的目标吸引策略、引入信息素增量调节因子并自适应调整信息素挥发系数来对基本蚁群算法进行了改进,提高了算法的求解效率,并进行仿真验证。根据战场已知威胁源生成Voronoi加权图,并与所提的改进蚁群算法相结合求解规划空间中的最优航迹。仿真结果表明,利用改进蚁群算法能够有效地提高收敛速度和寻优能力,可以较好地解决突发威胁下的UAV航迹规划问题,保证UAV能够回避战场威胁,顺利飞抵目标点。 相似文献
13.
14.
15.
16.
17.
随机最大似然算法(Stochastic Maximum Likelihood,SML)具有优越的波达方位(Direction-of-Arrival,DOA)估计性能,但SML解析过程较高的计算复杂度限制了该算法在实际系统中的应用.针对SML计算复杂度高的问题,提出一种低复杂度的粒子群优化算法(Particle Swarm Optimization,PSO),解决了传统PSO算法中粒子数多和迭代次数多的双重缺点.首先,根据天线获得的信号,将旋转不变子空间法(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)求得的闭式解作为DOA的预估计值,同时计算系统此时的信噪比以及SML在此信噪比下的克拉-美罗界(Cramer-Rao bound,CRB).然后,根据DOA预估计值和当前CRB值在SML最优解的近邻范围内确定较小的初始化空间,并在该空间初始化少量粒子.最后通过设计合适的惯性因子w,使粒子以合理的速度搜索最优解.实验结果表明,改进PSO算法所需的粒子个数和迭代次数大约是传统PSO算法的1/5,降低了SML的解析复杂度,计算时间是传统PSO算法的1/10,因此在收敛速度上也有显著的优势. 相似文献
18.
19.
基于Voronoi图和量子遗传算法的飞行器航迹规划方法 总被引:2,自引:1,他引:2
以飞行器航迹规划为应用背景,提出一种基于Voronoi图和量子遗传算法的飞行器航迹规划方法。首先,建立威胁源的V图,并构建发射点、目标点与威胁源的V图赋权有向图,从而建立飞行器航迹规划V图空间;然后,对传统量子遗传算法进行改进,引入了量子门旋转角步长动态调整机制;并增加了量子交叉操作和量子变异操作,使得改进后的量子遗传算法具有更高的搜索效率,采用改进后的量子遗传算法求解V图空间中的最优航迹;最后,进行了仿真实验。仿真结果表明,基于V图和量子遗传算法的航路规划方法是可行和有效的。 相似文献