首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

2.
The workability of 304L austenitic stainless steel has been investigated using torsion testing at temperatures from 20 °C to 1200 °C and strain rates of 0.01 and 10.0s -1 For the lower strain rate, temperature changes due to deformation heating were minimal, and failure was found to be fracture controlled at all temperatures. As for many other metals, the 304L exhibited a ductility minimum at warm-working temperatures. For the higher strain rate, failure was controlled by flow-localization processes at 20 °C and 200 °C. At these temperatures, flow softening resulting from deformation heating was deduced to be the principal cause of flow localization. A model to predict the strain at the onset of localization was developed and applied successfully to the 304L results. For high strain-rate torsion tests at 400 °C and above, failure was fracture controlled as in the low strain-rate tests, and the ductilities were shown to be correlated to those at the lower strain rate through the Zener-Hollomon parameter by employing an activation energy derived from flow-stress data.  相似文献   

3.
A commercial Al-6 pct Mg-0.3 pct Sc-0.3 pct Mn alloy subjected to equal-channel angular extrusion (ECAE) at 325 °C to a total strain of about 16 resulted in an average grain size of about 1 μm. Superplastic properties and microstructural evolution of the alloy were studied in tension at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 in the temperature interval 250 °C to 500 °C. It was shown that this alloy exhibited superior superplastic properties in the wide temperature range 250 °C to 500 °C at strain rates higher than 10−2 s−1. The highest elongation to failure of 2000 pct was attained at a temperature of 450 °C and an initial strain rate of 5.6 × 10−2 s−1 with the corresponding strain rate sensitivity coefficient of 0.46. An increase in temperature from 250 °C to 500 °C resulted in a shift of the optimal strain rate for superplasticity, at which highest ductility appeared, to higher strain rates. Superior superplastic properties of the commercial Al-Mg-Sc alloy are attributed to high stability of ultrafine grain structure under static annealing and superplastic deformation at T ≤ 450 °C. Two different fracture mechanisms were revealed. At temperatures higher than 300 °C or strain rates less than 10−1 s−1, failure took place in a brittle manner almost without necking, and cavitation played a major role in the failure. In contrast, at low temperatures or high strain rates, fracture occurred in a ductile manner by localized necking. The results suggest that the development of ultrafine-grained structure in the commercial Al-Mg-Sc alloy enables superplastic deformation at high strain rates and low temperatures, making the process of superplastic forming commercially attractive for the fabrication of high-volume components.  相似文献   

4.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 3.16 × 10?3 s?1 over the temperatures ranging from 300 K to 1123 K (27 °C to 850 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of nitrogen-alloyed low carbon grade type 316L(N) austenitic stainless steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The steel exhibited distinct low- and high-temperature serrated flow regimes and anomalous variations in terms of plateaus/peaks in flow stress/strength values and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. The fracture mode remained transgranular. At high temperatures, the dominance of dynamic recovery is reflected in the rapid decrease in flow stress/strength values, work hardening rate, and increase in ductility with the increasing temperature and the decreasing strain rate.  相似文献   

5.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.  相似文献   

6.
The crack initiation toughness (K c ) and crack arrest toughness (K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed onK a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures,K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, theK a values showed a more pronounced transition temperature than theK c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.  相似文献   

7.
The hot workability of a near gamma titanium aluminide alloy, Ti-49.5Al-2.5Nb-1.1Mn, was assessed in both the cast and the wrought conditions through a series of tension tests conducted over a wide range of strain rates (10−4 to 100 s−1) and temperatures (850 °C to 1377 °C). Tensile flow curves for both materials exhibited sharp peaks at low strain levels followed by pronounced necking and flow localization at high strain levels. A phenomenological analysis of the strain rate and temperature dependence of the peak stress data yielded an average value of the strain rate sensitivity equal to 0.21 and an apparent activation energy of ∼411 kJ/mol. At low strain rates, the tensile ductility displayed a maximum at ∼ 1050 °C to 1150 °C, whereas at high strain rates, a sharp transition from a brittle behavior at low temperatures to a ductile behavior at high temperatures was noticed. Dynamic recrystallization of the gamma phase was the major softening mechanism controlling the growth and coalescence of cavities and wedge cracks in specimens deformed at strain rates of 10−4 to 10−2 s−1 and temperatures varying from 950 °C to 1250 °C. The dynamically recrystallized grain size followed a power-law relationship with the Zener-Hollomon parameter. Deformation at temperatures higher than 1270 °C led to the formation of randomly oriented alpha laths within the gamma grains at low strain levels followed by their reorientation and evolution into fibrous structures containing γ + α phases, resulting in excellent ductility even at high strain rates.  相似文献   

8.
Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel   总被引:1,自引:0,他引:1  
Hot-ductility tests of a C-Mn-Nb-Al steel were performed in a tensile machine at different strain rates of 1×10−4, 3×10−4, 1×10−3, and 3×10−3 s−1 and at temperatures of 650 °C, 710 °C, 770 °C, 840 °C, 900 °C, 960 °C, and 1020 °C, which are close to the continuous casting conditions of steel. Fracture surfaces were examined using a scanning electron microscope. It was found that low strain rates and coarse austenitic grains decrease hot ductility. At all test temperatures, when the strain rate decreases, the hot ductility also decreases because the void growth mechanism predominates over void nucleation, giving time for nucleated cracks to grow. This leads, finally, to the catastrophic failure. The minimum hot ductility was found at 900 °C for all strain rates, and the fracture was intergranular. Fractographic evidence showed that the voids formed during the deformation surrounded the austenite grains, indicating that the deformation was concentrated in ferrite bands located in the same places when the testing temperature was in the two-phase field.  相似文献   

9.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

10.
Observations have been made of the fracture surfaces of ordered (Fe22Co78)3V deformed at low strain rates (3.3 and 42 x 10-3 s-1) in tension at temperatures from 20 to 1000 °C, that is, above and below the order/disorder transformation temperature of 950 ± 10 °C. From 20 to 700 °C, transgranular fracture occursvia the nucleation, growth, and coalescence of micro voids; correspondingly, high ductilities are obtained (34 to 44 pct). From 700 to 960 °C, the fracture mode changes from transgranular to intergranular and the ductility falls to a minimum of 4 pct. At 1000 °C a third mode operates, consisting of localized dynamic recrystallization followed by boundary sliding of recrystallized grains; ductility now rises sharply. The underlying mechanisms are considered and are supported through the results of additional experiments performed at distinctly higher strain rates.  相似文献   

11.
The mechanical properties of two heats of HY180 steel are compared after aging at 425 °C or 510 °C. The two heats of material appear very similar microstructurally, except most of the sulfides in one are believed to be titanium carbosulfides, while the sulfides in the other heat appear to be manganese sulfides. At both aging temperatures, the crack tip opening displacement at fracture (δIC) of the heat containing the titanium carbosulfides is over twice that of the heat containing the manganese sulfides. Measurements of the void volume fracture as a function of strain indicate that the titanium carbosulfide particles are much more resistant to void nucleation than are the manganese sulfide particles. The unusually high toughness of the heat containing the titanium carbosulfides is attributed to this increased resistance to void nucleation. Formerly Graduate Student, Carnegie Mellon University Formerly Postdoctoral Student, Carnegie Mellon University  相似文献   

12.
Superplasticity in the alloyed high carbon-steel 140NiCr16-6 with phosphorus additions and a fine grained microdupiex structure – containing cementite in volume fractions of 22 % (Fe,Cr,Ni)3C, particle size of about 1 μm and with a medium ferrite grain size of about 2 μm – has been investigated in the temperature regime of 550 to 675°C and in the strain rate range of 10?5 to 5 · 10?2 s?1. Maximum strain rate exponents of m = 0,45 at 675°C with strain rates of the order of 10?4 s?1 have been determined. Maximum superplastic elongations of about 700 % were detected. At higher strain rates of 10?3 s?1 superplastic elongations of about 570 % were achieved. At relatively low test temperatures of 550°C elongations up to 230 % were recorded. The activation analysis in the temperature regime of 550 to 650°C show an activation energy for superplastic flow of 250 ± 20 kJ/mol. This is in agreement with the activation energy for lattice self diffusion of iron in α-iron. Above 650°C the activation energy decreases to 70 kJ/mol. This is due to a stress induced decrease in the eutectoid α-γ-transformation temperature from 685°C to somewhat lower temperatures during superplastic deformation. The superplastic deformability (m > 0.3) of this steel in a wide strain rate range at relatively low temperatures above 550°C allows near net shape forming of complex parts applying low flow stresses.  相似文献   

13.
A modified heat treatment has been suggested whereby lower temperature plane-strain fracture toughness (K IC) of 4340 ultrahigh strength steel is dramatically improved in developed strength and Charpy impact energy levels. The modified heat-treated 4340 steel (MHT-4340 steel) consists of a mixed structure of martensite and about 25 vol pct lower bainite which appears in acicular form and partitions prior austenite grains. This is produced through isothermal transformation at 593 K for a short time followed by an oil quench (after austenitizing at 1133 K and subsequent interrupted quenching in a lead bath at 823 K). The mechanical properties obtained at room temperature (293 K) and 193 K have been compared with those achieved using various heat treatments. Significant conclusions are as follows: the MHT-4340 steel compared to the 1133 K directly oil-quenched 4340 steel increased theK IC values by 15 to 20 MPa • m1/2 at increased strength and Charpy impact energy levels regardless of the test temperature examined. At 193 K,K IC values of the MHT-4340 steel were not less than those of the 1473 K directly oil-quenched 4340 steel, in whichK IC values are significantly enhanced at markedly increased strength, ductility, and Charpy impact energy levels. The MHT-4340 steels compared to austempered 4340 steels at 593 K, which have excellent Charpy impact properties, showed superiorK IC values at significant increased strength levels irrespective of test temperatures. The lower temperature improvement inK IC can be attributed to not only the crack-arrest effect by acicular lower bainite but also to the stress-relief effect by the lower bainite just ahead of the current crack.  相似文献   

14.
The fine-grained duplex stainless steel Fe-22Cr-5Ni-3Mo-0.3N consisting of α- and γ-Fe(Cr,Ni,Mo) solid solutions exhibits structural superplasticity at deformation temperatures of 900 to 1050°C. The equiaxed microstructure with an average grain size of dα,γ ≈ 3 μm was produced by thermomechanical processing. This steel shows also superior superplastic properties at high strain rates up to ε ≈ 5 · 10?2 s?1. Maximum strain rate exponents of m ≈ 0.5 and elongations to failure of more than 800% were achieved. The superplastic deformability (m > 0.3) of this steel in a wide strain rate range enables near net shape deep drawing or blow forming of parts with complex shape applying low flow stresses. A deformation model is presented to describe the superplastic behaviour at high strain rates. Grain and interphase boundary sliding is accommodated by sequential steps of dislocation glide and climb. The maximum m -value of about 0.5 and an activation energy of 260 kJ/mol, which is comparable to that of self diffusion of Iron in γ-Fe (270 kJ/mol), and high dislocation densities indicate that dislocation climb in the slightly solid solution hardened γ-Fe phase (solid solution class II type of material) is the rate controlling step for superplastic flow.  相似文献   

15.
The high-temperature deformation and failure behavior of an orthorhombic titanium aluminide sheet alloy (fabricated by diffusion bonding of six thin foils) was established by conducting uniaxial tension and plane-strain compression tests at 980 °C and strain rates between 10−4 and 10−2 s−1. The stress-strain response was characterized by a peak stress at low strains followed by moderate flow softening. Values of the strain-rate sensitivity index (m) were between 0.10 and 0.32, and the plastic anisotropy parameter (R) was of the order of 0.6 to 1.0. Cavity nucleation and growth were observed during tensile deformation at strain rates of 10−3 s−1 and higher. However, the combined effects of lowm, low cavity growth rateη, and flow softening were deduced to be the source of failure controlled by necking and flow localization rather than cavitation-induced fracture prior to necking.  相似文献   

16.
The hot working behavior of the nickel-base superalloy IN 625 produced by hot extrusion of a powder metallurgy (P/M) compact has been studied by compression testing in the temperature range 900 °C to 1200 °C and true strain rate range 0.001 to 100 s−1. At strain rates less than about 0.1 s−1, the stress-strain curves exhibited near steady-state behavior, while at higher strain rates, the flow stress reached a peak before flow softening occurred. The processing maps developed on the basis of the temperature and strain rate and strain dependence of the flow stress exhibited three domains. (1) The first domain occurs at lower strain rates (<0.01 s−1) and temperatures higher than about 1050 °C. The peak efficiency and the temperature at which it occurs have increased with strain. The microstructure of the specimen deformed in this domain exhibited extensive wedge cracking. (2) The second domain occurs in the intermediate range of strain rates (0.01 to 0.1 s−1) and temperatures lower than 1050 °C, and in this domain, microstructural observations indicated dynamic recrystallization (DRX) of γ containing δ precipitates and carbide particles resulting in a fine-grained structure. (3) The third domain occurs at higher strain rates (> 10 s−1) and tempe ratures above 1050 °C, with a peak efficiency of about 42 pct occurring at 1150 °C and 100 s−1. Microstructural observations in this domain revealed features such as irregular grain boundaries and grain interiors nearly free from annealing twins, which are typical of DRX of homogeneous γ phase. The instability map revealed that flow instability occurs at strain rates above 1 s−1 and temperatures below 1050 °C, and this is manifested as intense adiabatic shear bands. These results suggest that bulk metal working of this material may be carried out in the high strain rate domain where DRX of homogeneous γ occurs. On the other hand, for achieving a fine-grained product, finishing operations may be done in the intermediate strain rate domain. The wedge cracking domain and the regime of instability must be totally avoided for achieving defectfree products.  相似文献   

17.
The mechanical behavior of a fine-grained duplex γ-TiAl alloy was studied in compression at strain rates ranging from 0.001 to 2000 s−1 and temperatures from −196 °C to 1200 °C. The temperature dependence of the yield and flow stresses is found to depend on the strain rate. At strain rates of 0.001 and 0.1 s−1, the yield stress decreases as the temperature increases, with a plateau between 600 °C and 800 °C. At strain rates of 35 and 2000 s−1, the yield stress exhibits a positive temperature dependence at temperatures above 600 °C; however, postyield flow stresses exhibit a reduced temperature dependency. The work-hardening rate decreases dramatically with temperature at low and high temperatures, with a plateau occurring at intermediate temperatures for all strain rates. The workhardening-rate plateau is seen to extend to higher temperatures as the strain rate increases. The strain-rate sensitivity at strain rates of 0.1 s−1 and greater is lower than 0.1, although it increases slightly with temperature. At 0.001 s−1, the strain-rate sensitivity increases dramatically at high temperatures (equal to 4.5 at 1200 °C). The anomalous (positive) temperature dependence of the yield stress at high strain rates (>1 s−1) and high temperatures (>600 °C) is explained via a dislocation-jog pinning mechanism. The negative temperature dependence of the yield stress at low strain rates (<1 s−1) and high temperatures (>900 °C) is thought to be due to a thermally activated dislocation-jog climb process in the grain interiors and/or deformation and recovery processes at/near grain boundaries. The decreased anomalous temperature dependence of the flow stress at high strain rates and high temperatures is ascribed to dynamic recovery promoted by adiabatic heating.  相似文献   

18.
A study of the response of A533B steel of high strain rate loading in shear is presented. Experiments have been conducted using a torsional split Hopkinson bar technique at strain rates of 800 s−1 and 5000 s−1, and various temperatures ranging from −150° to 300°C. The results show a sensitivity of the material to both the strain rate and he temperature at which it deforms. The failure process of the material at temperatures of 5° and −150°C is closely examined. The results show a ductile failure at both temperatures even though the stress-strain curves from tests at −150°C show no, or very little, homogeneous plastic deformation beyond the observed yield point. The failure process at both temperatures is associated with nucleation, growth and coalescence of voids.  相似文献   

19.
A study has been made of the influence of austenitizing temperature on the ambient temperature toughness of commercial AISI 4340 ultrahigh strength steel in the as-quenched (untempered) and quenched and tempered at 200°C conditions. As suggested in previous work, a systematic trend ofincreasing plane strain fracture toughness(K) Ic anddecreasing Charpy V-notch energy is observed as the austenitizing temperature is raised while the yield strength remains unaffected. This effect is seen under both static <slowbend> and dynamic (impact) loading conditions, and is rationalized in terms of a differing response of the microstructure, produced by each austenitizing treatment, to the influence of notch root radius on toughness. Since failure in all microstructures was observed to proceed primarily by a ductile rupture (microvoid coalescence) mechanism, an analysis is presented to explain these results, similar to that reported previously for stress-controlled fracture, based on the assumption that ductile rupture can be considered to be strain-controlled. Under such conditions, the decrease in V-notch Charpy energy is associated with a reduction in critical fracture strain at increasing austenitizing temperatures, consistent with an observed decrease in uniaxial and plane strain ductility. The increase in sharp-crack fracture toughness, on the other hand, is associated with an increase in “characteristic distance” for ductile fracture, resulting from dissolution of void-initiating particles at high austenitizing temperatures. The microstructural factors which affect this behavior are discussed, and in particular the specific role of retained austenite is examined. No evidence was found that the enhancement of fracture toughness at high austenitizing temperatures was due to the presence of films of retained austenite. The significance of this work on commonly-used Charpy/KIc empirical correlations is briefly discussed. formerly with Lawrence Berkeley Laboratory, Berkeley, CA  相似文献   

20.
Strain-controlled low-cycle fatigue tests of solution-annealed Incoloy 800 were performed at temperatures of 538°, 649°, 704°, and 760°C using axial strain rates of 4 × 10-3 and 4 × 10-4 sec-1. A few hold-time tests were also performed to indicate a noticeable reduction in fatigue life at hold times of 10 and 60 min. A comparison of these fatigue data with similar results for AISI 304 stainless steel indicates essentially identical behavior. An extensive study is made of the cyclic stress-strain behavior of Incoloy 800 and the relationship between the cyclic strain-hardening exponent and fatigue behavior is confirmed. Exponents onN f in the elastic and plastic strain range terms of the total strain range equation are identified and compared with those used in the Universal Slopes equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号