首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the accuracy ofisoelectric point determination by capillary isoelectric focusing, the pI values of nine proteins and a peptide, the pI values of which had been determined by other methods and ranging pI 3.55-9.60, were determined by capillary isoelectric focusing by cofocusing of recently developed peptide pI markers ranging 3.38-10.17, and the consistency of the pI values was examined. Isoelectric focusing was carried out in neutral polymer-coated capillaries, and the pH gradient was mobilized by pressure toward the cathode, to detect samples with absorption at 280 nm at a fixed detection point. Carrier ampholytes from two different suppliers and in different pH ranges were used. The sharp peaks of the highly pure peptide pI markers greatly facilitated the unambiguous identification of the peaks. When a carrier ampholyte ranging over the acidic side was used, the detection of acidic pI samples was anomalously delayed. This could be partly mitigated by reducing the viscosity of the anode solution in comparison with the pH gradient formed in the capillary. Since the detection times vs the pH relationships were not linear in most cases, the use of a linear calibration line over an entire pH gradient would be erroneous. Instead, the pI values of samples were calculated by assuming a linear relation for pH against detection time between two flanking marker peptides. Close agreement between the pI values, determined by capillary isoelectric focusing, and the reference values of the samples was observed within an average difference range of 0.04-0.08 pH unit with a sample consumption of 10-100 ng within 30-60 min. Some carrier ampholytes were preferentially more effective at either the acidic or the basic side of the pH gradient. For confirmation of the completion of focusing, the use of two different focusing times is recommended.  相似文献   

2.
The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.  相似文献   

3.
Mitochondria are highly heterogeneous organelles that likely have unique isoelectric points (pI), which are related to their surface compositions and could be exploited in their purification and isolation. Previous methods to determine pI of mitochondria report an average pI. This article is the first report of the determination of the isoelectric points of individual mitochondria by capillary isoelectric focusing (cIEF). In this method, mitochondria labeled with the mitochondrial-specific probe 10-N-nonyl acridine orange (NAO) are injected into a fused-silica capillary in a solution of carrier ampholytes at physiological pH and osmolarity, where they are focused then chemically mobilized and detected by laser-induced fluorescence (LIF). Fluorescein-derived pI markers are used as internal standards to assign a pI value to each individually detected mitochondrial event, and a mitochondrial pI distribution is determined. This method provides reproducible distributions of individual mitochondrial pI, accurate determination of the pI of individual mitochondria by the use of internal standards, and resolution of 0.03 pH units between individual mitochondria. This method could also be applied to investigate or design separations of organelle subtypes (e.g., subsarcolemmal and interfibrillar skeletal muscle mitochondria) and to determine the pIs of other biological or nonbiological particles.  相似文献   

4.
In this contribution capillary isoelectric focusing and capillary zone electrophoresis were applied for the separation and detection of different plant pathogens including Pseudomonas syringae pv. syringae, P. syringae pv. lachrymans, Pseudomonas savastanoi pv. fraxinus, P. savastanoi pv. olea, Agrobacterium tumefaciens, A vitis, Xanthomonas arboricola pv. juglandis, X. campestris pv. zinniae, and Curtobacterium sp.. The UV detection and sensitive fluorescence detection of the native phytopathogens or those dynamically modified by the nonionogenic fluorescent tenside based on pyrenebutanoate were used. The isoelectric points of the labeled phytopathogens were found comparable with the pI of the native compounds. No influence of the hosts on pIs of the strains of the genus Pseudomonas was observed. The identification of plant pathogens by gas chromatographic analysis of fatty acid methyl esters was compared with results of capillary isoelectric focusing. Capillary electromigration was successfully applied for the separation of microbes directly from plant tissue suspensions.  相似文献   

5.
Microfluidic high-resolution free-flow isoelectric focusing   总被引:1,自引:0,他引:1  
A microfluidic free-flow isoelectric focusing glass chip for separation of proteins is described. Free-flow isoelectric focusing is demonstrated with a set of fluorescent standards covering a wide range of isoelectric points from pH 3 to 10 as well as the protein HSA. With respect to an earlier developed device, an improved microfluidic FFE chip was developed. The improvements included the usage of multiple sheath flows and the introduction of preseparated ampholytes. Preseparated ampholytes are commonly used in large-scale conventional free-flow isoelectric focusing instruments but have not been used in micromachined devices yet. Furthermore, the channel depth was further decreased. These adaptations led to a higher separation resolution and peak capacity, which were not achieved with previously published free-flow isoelectric focusing chips. An almost linear pH gradient ranging from pH 2.5 to 11.5 between 1.2 and 2 mm wide was generated. Seven isoelectric focusing markers were successfully and clearly separated within a residence time of 2.5 s and an electrical field of 20 V mm-1. Experiments with pI markers proved that the device is fully capable of separating analytes with a minimum difference in isoelectric point of Delta(pI) = 0.4. Furthermore, the results indicate that even a better resolution can be achieved. The theoretical minimum difference in isoelectric point is Delta(pI) = 0.23 resulting in a peak capacity of 29 peaks within 1.8 mm. This is an 8-fold increase in peak capacity to previously published results. The focusing of pI markers led to an increase in concentration by factor 20 and higher. Further improvement in terms of resolution seems possible, for which we envisage that the influence of electroosmotic flow has to be further reduced. The performance of the microfluidic free-flow isoelectric focusing device will enable new applications, as this device might be used in clinical analysis where often low sample volumes are available and fast separation times are essential.  相似文献   

6.
We describe a whole-capillary, multicolor laser-induced fluorescence scanner for microfluidic protein analysis systems. Separation of proteins is achieved by isoelectric focusing in a short length of fused-silica capillary after which the resolved proteins are immobilized to the capillary wall using photochemistry. The capillary is then evacuated, and fluorescently labeled antibodies are flowed through the capillary to bind to the immobilized proteins. This technique provides high sensitivity, the ability to spatially resolve and quantify proteins, and provides the opportunity for complete automation. Results obtained by fluorescence detection are compared to those obtained by chemiluminescence while offering enhanced resolution and signal stability.  相似文献   

7.
Liu Z  Pawliszyn J 《Analytical chemistry》2003,75(18):4887-4894
A capillary isoelectric focusing (CIEF) system with liquid core waveguide (LCW) laser-induced fluorescence whole column imaging detection was developed in this study. A Teflon AF 2400 capillary was used as both the separation channel and the axially illuminated LCW. The excitation light was introduced at one end of the capillary, and propagated forward within the capillary. As the Teflon AF 2400 capillary has a refractive index (n = 1.29-1.31) lower than that of water (n = 1.33), total internal reflection was very apparent The employment of the Teflon AF 2400 capillary avoided the use of high refractive index additives such as glycerol, accommodating the system to wider applications. Due to its inert chemical properties, the capillary exhibited limited protein adsorption and electroosmotic flow; thus, the need for capillary preconditioning with polymeric solution and the addition of polymeric additives into the sample mixture can be avoided. Three types of proteins, naturally fluorescent proteins, covalently labeled proteins, and noncovalently labeled proteins, were examined using this method. CIEF under denaturing conditions was also explored, and several advantages over the native mode were found. When compared to a commercially available instrument with UV detection, the separation efficiency and peak capacity were similar while the detection sensitivity was enhanced by 3-5 orders of magnitude.  相似文献   

8.
Electroosmotic flow has been monitored in a capillary using a method based on periodic photobleaching of a neutral, fluorescent buffer additive. Rhodamine B was determined to be neutral between pH 6.0 and 10.8 and was added to the running buffer at a concentration of 400 nM. Rhodamine B was photobleached by opening a shutter under computer control for 250 ms every 5.00 s, to expose the dye to a laser beam and create a photobleached zone. The time was measured for the photobleached zone to migrate 6.13 mm to a downstream laser-induced fluorescence detector, to determine the rate of electroosmotic flow in the entire capillary. The flow rate was sampled every 5.00 s, and the precision of the flow measurements was 0.7% or better. Three fluorescent compounds were separated and detected by capillary electrophoresis with laser-induced fluorescence detection, while simultaneously monitoring the electroosmotic flow rate.  相似文献   

9.
High-resolution capillary isoelectric focusing separations of complex protein mixtures have been obtained for cellular lysates of Saccharomyces cerevisiae, Eschericia coli, and Deinococcus radiodurans. High quality separations are shown to be achievable for total protein concentrations of < 0.1 mg/mL. The separation reproducibility was examined, and the influence of the capillary inner wall coating on resolution investigated using fusedsilica capillaries coated with various hydrophilic polymers including hydroxypropyl cellulose, poly(vinyl alcohol), and linear polyacrylamide. Proteins having an isoelectric point (pI) difference of 0.004 are shown to be separated using a linear carrier ampholyte (linear pH gradient between two electrodes) of 3-10. Approximately 45 discrete peaks in the pI range of 5-7 were obtained for S. cerevisiae, approximately 80 peaks in the pI range of 4.5-8.5 for E. coli, and approximately 210 peaks in the pI range of 3-8.8 for D. radiodurans.  相似文献   

10.
Tang Q  Harrata AK  Lee CS 《Analytical chemistry》1996,68(15):2482-2487
On-line capillary isoelectric focusing (CIEF)-electrospray ionization mass spectrometry (ESIMS) as a two-dimensional separation system is employed for high-resolution analysis of hemoglobin variants A, C, S, and F. The effects of moving ionic boundary inside the CIEF capillary and MS scan rate on the separation resolution and mass detection of hemoglobin variants are investigated. The formation of a moving ionic boundary due to the replacement of background electrolyte counterions with sheath liquid counterions can be minimized by combining cathodic mobilization with a gravity-induced hydrodynamic flow. Hemoglobin variants F and A, with a pI difference of 0.05 pH unit, are almost baseline resolved and identified in CIEF-ESIMS. The concentration detection limit for each hemoglobin variant is in the range of 10(-)(8) M, comparable to that obtained in two-dimensional gel electrophoresis using silver staining. Initial preconcentration during the focusing step and the use of single-ion monitoring scan mode are responsible for improving detection limits.  相似文献   

11.
We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (muIPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 muIPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The muIPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported muIPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods.  相似文献   

12.
A new form of microchip isoelectric focusing that allows efficient coupling with pretreatment processes is reported. The sample is conveyed in a carrier ampholyte solution to the separation channel that is connected at both ends by two V-shaped lead channels, which supply electrode solutions to the connection point and complete the electrical connection to off-chip electrodes. The relatively high electric conductivity of the electrode solutions compared with that of the pH gradient enables focusing with a 2% loss of applied voltage at the electrodes using the lead channels. A glass microchip was constructed specifically for this configuration. The channel wall was coated with polydimethylacrylamide, and the IEF chip was operated in a chip holder equipped with on-chip connector valves. A plug of fluorescence-labeled peptide p I markers with p I values ranging from 3.64 to 9.56 with carrier ampholyte solution (pH 3-10) was introduced into the separation channel. When the plug reached the channel segment (24 mm in length) between the connection points with the electrolyte lead channels, isoelectric focusing was started after filling the lead channels with electrolyte solutions. The peptide markers were observed using scanning fluorescence detection. The entire range of the pH gradient was established in the segment after approximately 2 min. Isoelectric focusing of three consecutively injected sample plugs containing different p I markers was demonstrated.  相似文献   

13.
14.
A capillary isoelectric focusing-whole column imaging detection (CIEF-WCID) method was used to determine the isoelectric point (pI) of norovirus virus-like particles (VLPs). The VLPs were produced from noroviruses that represented the two genogroups, genogroup I (Funabashi, Seto, and Norwalk) and genogroup II (Hawaii, Kashiwa, and Narita). Using the imaged CIEF-WCID detection technique, separation was accomplished using a short (4-5 cm) internally coated capillary (100-microm diameter) and a whole-column optical absorption imaging detector operated at 280 nm. CIEF-WCID experiments showed the similarity of the pI values of VLPs from genogroups I and II, with pI values of 5.9, 5.9, 6.0, and 6.0 for Funabashi, Norwalk, Seto, and Hawaii. The two other VLPs displayed pI values of 5.5 (Kashiwa) and 6.9 (Narita). The VLP peaks were shown to be reproducibility resolved. CIEF-WCID shows great promise for norovirus detection in public health, clinical, and food safety applications, as CIEF-WCID overcomes several limitations of the currently used genetic and immunological methods.  相似文献   

15.
A coupling method of solid-phase microextraction (SPME) and capillary isoelectric focusing (CIEF) with laser-induced fluorescence (LIF) whole column imaging detection (WCID) was developed for the analysis of proteins. Unlike other liquid-phase separation methods and conventional CIEF, proteins are focused into stationary bands within a pH gradient in CIEF-WCID. Thus, CIEF-WCID is the most compatible liquid-phase separation method for coupling with SPME, which can effectively resolve the problems associated with the slow desorption kinetics of SPME in a liquid phase. By combining SPME and CIEF-WCID, the desorption time can be as long as necessary, allowing complete desorption without any band broadening and analyte carryover. By using this method, R-phycoerythrin in water can be extracted by SPME in 10 min, and subsequently analyzed by CIEF-LIF-WCID within 20 min, providing a limit of detection of 3.5 x 10(-12) M (S/N = 3). The feasibility of the SPME-CIEF-LIF-WCID method was demonstrated by extracting and analyzing extracellular phycoerythrins in cultured cyanobacteria samples. Extracellular phycoerythrins at the nanomolar level were extracted and analyzed in 30 min, while avoiding the interference of the cyanobacteria cells.  相似文献   

16.
Zhang H  Yeung KK 《Analytical chemistry》2004,76(22):6814-6818
A simple way to selectively isolate peptides based on their isoelectric points (pI) for MALDI mass spectral analysis is described. An applied voltage was used to electromigrate peptides into a capillary. The capillary was modified with a zwitterionic surfactant, 1,2-dilauroyl-sn-phosphatidylcholine (DLPC), to suppress the electroosmotic flow (EOF) during injection. Hence, either the cationic or the anionic peptides were introduced, depending on the voltage polarity. By controlling the pH, selective loading of peptides was performed to isolate trace components from a mixture. The injected sample plugs were subsequently spotted in nanoliter volumes for MALDI-MS analysis. No significant sample losses resulting from selective sampling were detected. Low attomole-level detection of peptides (adrenocorticotropic hormone fragment 18-39, pI 4.25) was achieved from a mixture containing other peptides (angiotensin I, pI 6.92, and bradykinin, pI 12.00) at 100 000-fold higher concentrations.  相似文献   

17.
Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.  相似文献   

18.
Extensive prefractionation is now considered to be a necessary prerequisite for the comprehensive analysis of complex proteomes where the dynamic range of protein abundances can vary from approximately 10(6) for cells to approximately 10(10) for tissues such as blood. Here, we describe a high-resolution 2D protein separation system that uses a continuous free-flow electrophoresis (FFE) device to fractionate complex protein mixtures by solution-phase isoelectric focusing (IEF) into 96 well-defined pools, each separated by approximately 0.02-0.10 pH unit depending on the gradient created, followed by rapid (approximately 6 min per analysis) reversed-phase high-performance liquid chromatography (RP-HPLC) of each FFE pool. Fractionated proteins are readily visualized in a virtual 2D format using software that plots protein loci, pI in the first dimension and relative hydrophobicity (i.e., RP-HPLC retention time) in the second dimension. By coupling a diode-array detector in line with a multiwavelength fluorescence detector, separated proteins can be monitored in the RP-HPLC eluent by both UV absorbance and intrinsic fluorescence simultaneously from a single experiment. Triplicate analyses of standard proteins using a pH 3-10 gradient conducted over a 3-day period revealed a high system reproducibility with a SD of 0.57 (0.05 pH unit) within the FFE pools and 0.003 (0.18 s) for protein retention times in the second-dimension RP-HPLC step. In addition, we demonstrate that the FFE-IEF/RP-HPLC separation strategy can also be applied to complex mixtures of low molecular weight compounds such as peptides. With the facile ability to measure the pH of the isoelectric focused pools, peptide pI values can be estimated and used to qualify peptide identifications made using either MS/MS sequencing approaches or pI discriminated peptide mass fingerprinting. The calculated peak capacity of this 2D liquid-based FFE-IEF/RP-HPLC system is 6720.  相似文献   

19.
Kang SH  Yeung ES 《Analytical chemistry》2002,74(24):6334-6339
The behavior of individual molecules of R-phycoerythrin (RPE) was monitored by fluorescence imaging at various pHs and ionic strengths within the evanescent-field layer (EFL) at a water/fused-silica interface. Above the isoelectric point (pI), the individual protein molecules moved between exposures with random motion. As the pH approached the pI of the protein, the RPE molecules were partially adsorbed onto the fused-silica surface. The residence time and the number of molecules within the EFL also increased near the pI. Below the pI, the protein molecules were completely and permanently adsorbed onto the surface. However, the observed number of distinct molecule spots was decreased somewhat because of aggregation. At a given buffer condition, plots of residence times and molecule numbers exhibit asymmetry nearly identical to the corresponding elution peaks of the proteins in capillary electrophoresis and capillary liquid chromatography. These results provide insights into the fundamental interactions for the adsorption/desorption of proteins at the liquid/solid interface.  相似文献   

20.
A new method called dynamic kinetic capillary isoelectric focusing (DK-CIEF) is presented for the study of protein-DNA interactions. The method is based on CIEF with laser-induced fluorescence-whole column imaging detection in which protein-DNA complexes are separated with spatial resolution while dissociations of the complexes are dynamically monitored using a CCD camera with temporal resolution. This method allows for the discrimination of different complexes and the measurement of the individual dissociation rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号