首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested differences in female pheromone production and male response in three species of the genus Adoxophyes in Korea. Females of all three species produced mixtures of (Z)-9-tetradecenyl acetate (Z9–14:OAc) and (Z)-11-tetradecenyl acetate (Z11–14:OAc) as major components but in quite different ratios. The ratio of Z9–14:OAc and Z11–14:OAc in pheromone gland extracts was estimated to be ca. 100:200 for Adoxophyes honmai, 100:25 for Adoxophyes orana, and 100:4,000 for Adoxophyes sp. Field tests showed that males of each species were preferentially attracted to the two-component blends of Z9–14:OAc and Z11–14:OAc mimicking the blends found in pheromone gland extracts of conspecific females. The effects of minor components identified in gland extracts on trap catches varied with species. Addition of 10-methyldodecyl acetate (10me-12:OAc) or (E)-11-tetradecenyl acetate (E11–14:OAc) to the binary blend of Z9–14:OAc and Z11–14:OAc significantly increased captures of A. honmai males, whereas E11–14:OAc exhibited a strongly antagonistic effect on catches of Adoxophyes sp. males. Moreover, (Z)-9-tetradecen-1-ol (Z9–14:OH) or (Z)-11-tetradecen-1-ol (Z11–14:OH) added to the binary blends increased attraction of male A. orana but not A. honmai and Adoxophyes sp. males, suggesting that these minor components, in addition to the relative ratios of the two major components, play an important role in reproductive isolation between Adoxophyes species in the southern and midwestern Korea where these species occur sympatrically.  相似文献   

2.
We analyzed the sex pheromone of the pear fruit moth, Acrobasis pyrivorella, by means of gas chromatography–electroantennographic detection (GC-EAD) and GC–mass spectrometry. Two EAD-active compounds were detected in the pheromone gland extract of females. They were identified as (Z)-9-pentadecenyl acetate (Z9-15:OAc) and pentadecyl acetate (15:OAc). The amounts per female gland (mean ± standard error) of these compounds were 12.9 ± 2.8 and 0.8 ± 0.1 ng, respectively. Synthetic Z9-15:OAc (300 μg) attracted conspecific males in field trapping experiments. When 15:OAc (21 μg; 7% of Z9-15:OAc quantity) was added, the number of males trapped increased significantly. Catch in traps baited with the mixture of these compounds was greater than that in traps baited with 1–3-day-old virgin females. We, therefore, conclude that Z9-15:OAc and 15:OAc are sex pheromone components of this species.  相似文献   

3.
This study describes the identification of a sex pheromone component of a cossid moth, Cossus insularis. Coupled gas chromatographic–electroantennographic detection (GC–EAD) analysis of solid-phase microextraction (SPME) collections of volatiles released by live female moths showed that two compounds elicited EAG responses from the antennae of male moths. These compounds were identified as (E)-3-tetradecenyl acetate (E3-14:Ac) and (Z)-3-tetradecenyl acetate (Z3-14:Ac) by mass spectral analysis and retention index comparisons with synthetic standards. The ratio of E3-14:Ac and Z3-14:Ac was 95:5 in the effluvia of a female. In field bioassays, sticky traps baited with blends of E3-14:Ac and Z3-14:Ac showed that E3-14:Ac is an essential component of the pheromone. However, the role of Z3-14:Ac is unclear, because E3-14:Ac as a single component was as attractive to male moths as blends of E3-14:Ac and Z3-14:Ac, including the 95:5 blend released by live female moths.  相似文献   

4.
Several studies have shown intraspecific geographical variation in the composition of sex pheromones. Pheromone lures from North America and Europe were not effective against the fall armyworm Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in Brazil, so we examined the composition of the sex pheromone produced by females from Brazilian populations. Virgin female gland extracts contained (Z)-7-dodecenyl acetate (Z7-12:Ac), (E)-7-dodecenyl acetate (E7-12:Ac), dodecyl acetate, (Z)-9-dodecenyl acetate, (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z)-10-tetradecenyl acetate, tetradecyl acetate/(Z)-11-tetradecenyl acetate (Z11-16:Ac), and (Z)-11-hexadecenyl acetate. The relative proportions of each acetate were 0.8:1.2:0.6:traces:82.8:0.3:1.5:12.9, respectively. This is the first time that E7-12:Ac has been reported from the pheromone gland of S. frugiperda. Only three compounds, Z9-14:Ac, Z7-12:Ac, and E7-12:Ac, elicited antennal responses, and there were no differences in catch between traps baited with either Z7-12:Ac + Z9-14:Ac or Z7-12:Ac + Z9-14:Ac + Z11-16:Ac blends. However, the Z7-12:Ac + Z9-14:Ac + E7-12:Ac blend was significantly better than Z7-12:Ac + Z9-14:Ac, indicating that E7-12:Ac is an active component in the sex pheromone of the Brazilian populations of S. frugiperda.  相似文献   

5.
The grass webworm Herpetogramma licarsisalis (Lepidoptera: Crambidae), which has recently established in pasture in Northland, New Zealand, is an important pest of many tropical and subtropical grasses. Two pheromone components, (Z)-11-hexadecen-1-yl acetate (Z11–16:Ac) and (11Z,13E)-hexadecadien-1-yl acetate (Z11,E13–16:Ac), were identified in pheromone gland extracts of female moths by gas chromatography (GC), GC-electroantennographic detection, and GC-mass spectrometry in conjunction with microchemical tests (dimethyldisulfide and 4-methyl-1,2,4-triazoline-3,5-dione derivatizations). Z11,E13–16:Ac and its geometric isomer (11E,13Z)-hexadecadien-1-yl acetate (E11,Z13–16:Ac) were synthesized via stereoselective Wittig reactions, and the identity of the diene present in the pheromone glands was confirmed to be Z11,E13–16:Ac. Field bioassays at Indooroopilly in Brisbane, Australia, established that Z11,E13–16:Ac was necessary and sufficient for attraction of male grass webworm moths and that the corresponding alcohol, (11Z,13E)-hexadecadien-1-ol (Z11,E13–16:OH), had a strong inhibitory effect on trap catches at the ratios tested. When mixed with Z11,E13–16:Ac in various ratios, Z11–16:Ac had no effect on the attractiveness of lures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Twelve products related to the sex pheromone main components (Z)-9- and (Z)-11-tetradecenyl acetate (Z9–14Ac andZ11–14Ac, respectively), were identified in female pheromone gland extracts of the laboratory-reared summerfruit tortrix moth,Adoxophyes orana F.v R. These are the geometric isomers and the alcohols of the main components, (Z)-9-dodecenyl acetate, (Z)-11-hexadecenyl acetate, and saturated acetates of 12–22 carbons. The ratio ofZ9–14Ac toZ11–14Ac in individuals varied from 3.51 to 111 with an average of 6.2; their total added up to 462 ng/female with an average of 182 ng for 2- to 7-day-old individuals. No qualitative or quantitative differences were observed between laboratory and field insects.Z9–14Ac,Z11–14Ac and the corresponding alcohols were also found in female effluvia. Addition of either of the two alcohols to a blend of the two acetates augmented trap catch in the field. The same was true for (Z)-9,(E)-12-tetradecadienyl acetate which was not detected in gland extracts.  相似文献   

7.
Extracts of female sex pheromone gland of the carpenterworm moth, Holcocerus hippophaecolus Hua, a pest of sandthorn, Hippophae rhamnoides L. were found to contain (E)-3-tetradecenyl acetate (E3-14:Ac), (Z)-3-tetradecenyl acetate (Z3-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), the corresponding alcohols, E3-14:OH, Z3-14:OH, Z7-14:OH, and (E)-9-tetradecenyl acetate (E9-14:Ac). Electroantennographic (EAG) analysis of these chemicals and their analogs demonstrated that Z7-14:Ac elicited the largest male EAG response, followed by E3-14:Ac. In field trials, traps baited with either Z7-14:Ac or E3-14:Ac alone caught no male moths, whereas a combination of these two components in a 1:1 ratio caught more males than control traps. Addition of Z7-14:OH and Z3-14:OH or the alcohols plus E9-14:Ac did not enhance trap catches. We conclude that the sex pheromone of H. hippophaecolusis composed of Z7-14:Ac and E3-14:Ac. Optimal ratios and doses of these two components, and the possible role of other minor components, remain to be determined.  相似文献   

8.
The sex pheromone of female dogwood borers (DWB) Synanthedon scitula (Harris) (Lepidoptera: Sesiidae) was determined to be an 88:6:6 ternary blend of (Z,Z)-3,13-octadecadienyl acetate (Z,Z-3,13-ODDA), (E,Z)-2,13-octadecadienyl acetate (E,Z-2,13-ODDA), and (Z,E)-3,13-octadecadienyl acetate (Z,E-3,13-ODDA) by gas chromatography–electroantennographic detection (GC–EAD) and gas chromatography–mass spectrometry (GC–MS). The major sex pheromone component, Z,Z-3,13-ODDA, was attractive as a single component. A blend of Z,Z-3,13-ODDA with 1–3% of E,Z-2,13-ODDA (binary blend) was more attractive than the single component. A third component, Z,E-3,13-ODDA, was sometimes observed in GC–EAD analyses, and enhanced attraction to the binary blend in some field bioassays. Lures containing 1 mg of binary and ternary blends attracted 18 and 28 times more male DWB moths, respectively, than caged virgin females in field trials. Attraction was strongly antagonized by addition of as little as 0.5% of E,Z-3,13-octadecadienyl acetate (E,Z-3,13-ODDA). In a period of 12 wk in 2004, more than 60,000 males were captured in sticky traps baited with synthetic pheromone blends in six apple orchards in Virginia, West Virginia, and North Carolina. Lure longevity trials showed that ∼76% of the pheromone remained in rubber septum lures after 12 wk in the field.  相似文献   

9.
Electroantennogram profiles of saturated and monounsaturated 12-, 14-, and 16-carbon acetates, and 12- and 14-carbon alcohols implicated (Z)-9-tetradecen-1-ol acetate (Z9-14: Ac) as a component of the female sex pheromone ofHulstia undulatella (Clemens). Gas chromatography-mass spectrometric analysis of extract of the female sex pheromone glands showed the presence of Z9-14:Ac (8.5 ng/female), (Z)-9-tetradecen-1-ol (Z9-14:OH), and (Z)-11-hexadecen-1-ol acetate (Z11-16:Ac) in a ratio of 100421, respectively. In tests in sugar beet fields, Z9-14:Ac alone produced some trap catch. Addition of Z9-14: OH did not increase catch while addition of Z11-16:Ac eliminated catch, but addition of both Z9-14:OH and Z11-16: Ac increased catch sevenfold. A combination of Z9-14: OH and Z11-16: Ac without Z9-14: Ac did not produce trap catch. A lure of 200 g Z9-14:Ac+16 g Z9-14:OH+42 g Z11-16:Ac is suggested for use in monitoring traps.Lepidoptera: Pyralidae: Phycitinae.  相似文献   

10.
The calling behavior and pheromone titer in the female smaller tea tortrix moth,Adoxophyes sp., were investigated under a 1410-hr light-dark photoperiod. Quantitative gas chromatographic analysis of ovipositor extract for (Z)-11-tetradecenyl acetate (Z11–14Ac) and (Z)-9-tetradecenyl acetate (Z9–14Ac), the major pheromone components of this species, obtained on the third day postemergence, indicated that extractable amounts of sex pheromone were present throughout the period of observation. Maximal pheromone titer and calling activity was reached at 8 and 10 hr after onset of scotophase, respectively. The ratio ofZ11–14Ac toZ9–14Ac through the 24-hr period varied significantly. The significance of the sex pheromone component ratio variation on the attraction of males was tested in a field experiment. The ratio of males trapped by the most attractive blend versus the least attractive one was 2.16.  相似文献   

11.
The Yunnan pine caterpillar Dendrolimus houi Lajonquière is a serious defoliator of coniferous forests in southwestern China. Gas chromatography–electroantennography (GC–EAG) analyses of extracts of female sex pheromone glands of D. houi moths revealed the presence of three compounds eliciting antennal responses. These were identified as (5E,7Z)-5,7-dodecadien-1-ol (E5,Z7-12:OH), (5E,7Z)-5,7-dodecadien-1-yl acetate (E5,Z7-12:OAc), and (5E,7Z)-5,7-dodecadienal (E5,Z7-12:Ald) by comparison of their GC retention indices, mass spectra, and EAG activities with those of synthetic standards. Average amounts of E5,Z7-12:OH, E5,Z7-12:OAc, and E5,Z7-12:Ald per calling virgin D. houi female were 14.7 ± 12.9 ng (± SD), 5.8 ± 5.4 ng, and 0.8 ± 1.4 ng, respectively, in a ratio of 100:39.7:5.6. These three components were also collected from the headspace of calling virgin female moths by solid-phase microextraction (SPME). In addition, trace quantities of (Z)-5-dodecen-1-ol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH), (5E,7E)-5,7-dodecadien-1-ol (E5,E7-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7Z)-5,7-dodecadien-1-yl acetate (Z5,Z7-12:OAc), and (5E,7E)-5,7-dodecadien-1-yl acetate (E5,E7-12:OAc) were tentatively identified in female pheromone gland extracts by selected ion monitoring GC-MS. Field trapping experiments showed that E5,Z7-12:OH, E5,Z7-12:OAc, and E5,Z7-12:Ald were essential for attraction of male D. houi moths. Traps baited with a 20:1:1 blend (alcohol/acetate/aldehyde) loaded on gray rubber septa were as effective as traps baited with virgin female moths. The optimum ratio of acetate to aldehyde was 1:1, and this ratio was more critical than the ratio of either compound to the alcohol. This represents the first example of (E,Z)-isomers in pheromone blends of Dendrolimus species.  相似文献   

12.
Sex Pheromone of the Cranberry Blossom Worm, Epiglaea apiata   总被引:2,自引:0,他引:2  
The cranberry blossom worm, Epiglaea apiata (Grote) (Lepidoptera: Noctuidae), is a major pest of cranberries in New Jersey. The female sexpheromone of this moth was identified as a blend of (Z)-9-hexadecenyl acetate (Z9-16:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), and tetradecyl acetate (14:Ac) by gas chromatographic–electroantennographic detection and gas chromatography–mass spectrometry. The ratio of the components in extracts of the female pheromone gland was determined to be 65 : 2 : 33 of the Z9-16:Ac, Z9-14:Ac, and 14:Ac, respectively. The double bond positions of the pheromone components were confirmed by dimethyl disulfide derivatization. In addition to the above three components, a mixture of C4–C10 aliphatic acids was present in both gland extracts and effluvia collections, and the acids elicited significant EAD responses from male moth antennae. However, addition of the C4–C10 aliphatic acids to the pheromone blend did not significantly increase trap captures. Three-hundred- and 1000-g doses of a synthetic blend containing Z9-16:Ac, Z9-14:Ac, and 14:Ac (65 : 2 : 33), on a rubber septum were more attractive to males than lower doses.  相似文献   

13.
Five active compounds were detected during analyses of ovipositor washings and effluvia from virgin female Coniesta ignefusalis moths by gas chromatography (GC) linked to electroantennographic (EAG) recording from a male moth. These were identified as (Z)-7-dodecen-1-ol (Z7–12:OH), (Z)-5-decen-1-ol (Z5–10:OH), (Z)-7-dodecenal (Z7–12:Ald), (Z)-7-dodecenyl acetate (Z7–12:Ac), and (Z)-9-tetradecen-1-ol (Z9–14:OH) by comparison of their GC retention times, mass spectra, and EAG activities with those of synthetic standards. Laboratory tests of dispensers for these compounds showed that release rates from polyethylene vials increased to relatively uniform values after three to four days, but release from septa was very rapid and nonuniform and decreased to low levels after two to three days. Trapping tests in Niger showed that the major component, Z7–12:OH, and two of the minor components, Z5–10:OH and Z7–12:Ald, were essential for attraction of male C. ignefusalis moths. The most attractive blend contained these three components in a 100:5:3.3 ratio in a polyethylene vial, which emitted the components in similar proportions to those produced by the female C. ignefusalis moth. Water traps baited with this blend containing 1 mg of Z7–12:OH caught more male C. ignefusalis moths than traps baited with newly emerged female moths. Addition of up to 10% of the corresponding E isomers of the pheromone components had no effect on catches, but addition of the other two minor components detected, Z7–12:Ac and/or Z9–14:OH, to the attractive blend at naturally occurring levels caused significant reductions in trap catch.  相似文献   

14.
The behavioral responses of Lobesia botrana males to calling females, pheromone gland extracts, and synthetic sex pheromones were recorded in a wind tunnel. Gland extracts and synthetic pheromones were released from a pheromone evaporator. The numbers of males reaching the source and their flight tracks in response to calling females and pheromone gland extracts were compared to those of synthetic blends. Upwind flights to natural sex pheromone were straighter and faster than to a three-component blend of (E)-7,(Z)-9-dodecadienyl acetate (E7,Z9–12:Ac), (E)-7,(Z)-9-dodecadien-1-ol (E7,Z9–12:OH), and (Z)-9-docecenyl acetate (Z9–12:Ac) (100:20:5). The optimum ratio of E7,Z9–12:OH and Z9–12:Ac to E7,Z9–12:Ac was found to be 5% and 1%, respectively. An additional seven compounds identified in the sex pheromone gland were investigated for their biological activity. Two unsaturated acetates, i.e., (E)-9-dodecenyl acetate (E9–12:Ac) and 11-dodecenyl acetate (11–12:Ac), increased the number of males reaching the source as well as straightness, linear velocity, and decreased the track angle of upwind flight. Optimum response was obtained by releasing 10 pg/min E7,Z9–12:Ac in a mixture with 0.5 pg/min E7,Z9–12:OH, 0.1 pg/min Z9–12:Ac, 0.1 pg/min E9– 12:Ac and 1 pg/min 11-12–Ac. The saturated acetates previously identified in the female glands were biologically inactive.  相似文献   

15.
The apple leafminer moth, Phyllonorycter ringoniella, is becoming a more serious insect pest on apple trees with four to five generations a year in Korea. In order to devise a forecasting method for more accurate estimation of their numbers and development timing, the sex attractant was studied. Various ratios, from 10:0 to 0:10, of the two components, (Z)-10-tetradecenyl acetate (Z10–14:Ac) and (E,Z)-4,10-tetradecadienyl acetate (E4,Z10–14:Ac), identified from the sex pheromone gland (Jung and Boo, 1997), were tested for attractivity in terms of behavioral response (taxis, approach, and landing) against P. ringoniella males in a wind tunnel. The lure with Z10–14:Ac/E4,Z10–14:Ac in a ratio of 4:6 elicited the highest response in two (taxis and approach) measurement categories. For eliciting landing behavior, the two blends of 5:5 and 4:6 were best. The single component, Z10–14:Ac, elicited taxis behavior, but a combination of two chemicals was needed for eliciting all three behaviors. In the field, male attraction to various lure mixtures in Pherocon IC traps was usually greater than attraction to virgin females. The best field activity was in the lure baited with a 4:6 ratio of Z10–14:Ac and E4,Z10–14:Ac. Similar results were obtained from tests conducted in a net house. This optimum ratio for attracting P. ringoniella males in Korea is different from those reported in Japan (10:3) or China (7:3 to 6:4). The isomer E10–14:Ac neither improved nor depressed the number of catches when added at up to 10% of the total mixture to lures of the two components in the 4:6 ratio. The attractivity of the lures increased with higher amounts of the pheromones, up to 10 g in the wind-tunnel experiment and 5 mg in the apple orchard. The number of males captured was not significantly different among traps installed at 0.3, 1.5, or 2 m above the ground, or among wing, delta, or water traps. A rubber septum dispenser impregnated with 1 mg of the 4:6 mixture maintained its field attractivity for up to eight weeks.  相似文献   

16.
S. latifascia andS. descoinsi are closely related species that occur sympatrically over limited areas in French Guiana. We examined allopatric populations,S. latifascia originating from Barbados andS. descoinsi from French Guiana. Studies on nocturnal activity cycles showed temporal partitioning of female calling behavior, male sexual activity, and mating behavior.S. descoinsi were sexually active in the first half of the scotophase whereasS. latifascia were sexually active in the second half. Seven compounds (Z9–14: Ac,Z9,E12–14: Ac,Z11–16: Ac,E9,E12–14: Ac,Z9–14: Ald,Z9,E11–14: Ac andZ11–14: Ac) were identified in females of bothS. latifascia andS. descoinsi extracts.Z9–14: Ac was a main pheromone component for the two species. The major difference between the pheromones ofS. latifascia andS. descoinsi was the proportion ofZ9,E12–14: Ac in the extracts: 7% forS. latifascia and 42% forS. descoinsi. The proportion ofZ9,E12–14: Ac relative to the sum ofZ9–14: Ac andZ9,E12–14: Ac in individual gland extracts was 4±1% (mean ± standard deviation) forS. latifascia and 44.8±6% forS. descoinsi. Electrophysiological studies showed no major differences between species in the morphology and physiology of the pheromone receptors of males. Receptors were identified forZ9–14: Ac andZ9,E12–14: Ac, but no receptor was found for the other compounds. In the wind tunnel, synthetic blends withZ9–14: Ac andZ9,E12–14: Ac gave the same behavioral responses as conspecific female extracts for the males of the two species. Some cross-attraction was observed with synthetic blends and female extracts. Nethertheless, previous field trapping experiments in French Guiana were species-specific and suggested differences in the attractivity of males. In the laboratory,S. latifascia andS. descoinsi could hybridize in both reciprocal crosses. FemaleS. descoinsi × maleS. latifascia mating rate was significantly lower than for the reciprocal cross, and 26.7% of femaleS. descoinsi could not separate from maleS. latifascia after mating. These copulatory problems may involve genital incompatibilities between males and females. Several barriers against interbreeding betweenS. latifascia andS. descoinsi seem to combine including differences in nocturnal activity cycles, pheromone differences, and genital barriers. The study of sympatric populations will be necessary to define the role of sex pheromones in the reproductive isolation ofS. latifascia andS. descoinsi.  相似文献   

17.
The rice looper,Plusia festucae, is a defoliator of the rice plant. Chromatographic behavior, chemical reactions, and GC-MS analyses of the female sex pheromone revealed that the main component was (Z)-5-dodecenyl acetate (Z5–12: OAc, component I). The GC-MS analysis also indicated that the pheromone gland extract included another three monounsaturated components, (Z)-5-dodecen-l-ol (Z5–12: OH, component II), (Z)-7-tetradecenyl acetate (Z7–14: OAc, component III), and (Z)-7-tetradecen-l-ol (Z7–14: OH, component IV) in the following ratio: I:II:III:IV=100:6:15:1. In a paddy field, the mixture of synthetic I, II, and III in a ratio of 100:6:15 showed stronger attractancy than the virgin female, while the role of IV was unknown.  相似文献   

18.
Behavior of males ofHydraecia micacea (Esper) responding to virgin females and to synthetic pheromone blends were investigated in a laboratory wind tunnel. The synthetic blend consisted of saturated 14Ac (68.9%),Z9–14Ac (3.4%),E11–14Ac (14.6%), andZ11–14Ac (13.1%). Virgin females were significantly better lures than the four-component synthetic blend for most behaviors. By deleting components individually from the four-component blend,Z9–14Ac,Z11–14Ac, and saturated 14Ac were found to be necessary for communication butE11–14Ac was found to have no effect on typical pheromone-mediated reproductive behaviors. Close-range studies suggested that chemicals of low volatility, released from moths, were important in eliciting copulation attempts. Field studies reinforced laboratory findings regarding the effectiveness of different lures and indicated thatHeliothis traps were the most effective for monitoring.  相似文献   

19.
Ovipositor washings from virgin femaleSpodoptera exempta (Walker) (Lepidoptera: Noctuidae) were analyzed by high-resolution gas chromatography (GC) linked to a male electroantennogram (EAG). GC retention times of the two major EAG responses observed were consistent with their assignment as (Z)-9-tetradecenyl acetate and (Z,E)-9,12-tetradecadienyl acetate, as previously identified. However, three other EAG responses were also noted that had GC retention times consistent with (Z)-9-tetradecenal, (Z)-9-tetradecen-1-o 1, and (Z)-11-hexadecenyl acetate. The components were present in the ratio of 10051.53.54, respectively. Further analysis of the ovipositor washings by GC linked to a mass spectrometer (GC-MS) confirmed these findings and indicated the presence of a sixth component consistent with (Z)-11-tetradecenyl acetate present at 2 % of the major component. In field tests carried out in Kenya, (Z)-11-hexadecenyl acetate was the only newly identified component to enhance the catch of the original two-component mixture when presented in their natural ratio. The addition of (Z)-9-tetradecen-1-ol reduced catch, while (Z)-9-tetradecenal and (Z)-11-tetradecenyl acetate had no apparent effect.  相似文献   

20.
The sex pheromone blend of Hemileuca burnsi (Lepidoptera: Saturniidae) from the western Mojave Desert was determined to be a combination of (10E,12Z)-hexadecadien-1-yl acetate (E10,Z12-16:Ac), (10E,12Z)-hexadecadien-1-ol (E10,Z12-16:OH), (10E,12E)-hexadecadien-1-yl acetate (E10,E12-16:Ac), and hexadecyl acetate (16:Ac). (10E,12Z)-Hexadecadienal (E10,Z12-16:Ald) was tentatively identified in pheromone gland extracts based on electroantennographic responses and, when added to the above blend, it enhanced trap captures at low doses. The mean ratio of the compounds in extracts of pheromone glands was 100:23:232:14:0.4 (E10,Z12-16:Ac: E10,E12-16:Ac: 16:Ac: E10,Z12-16:OH: E10,Z12-16:Ald). Field trials indicated that although E10,Z12-16:Ac and E10,Z12-16:OH were essential for attraction, the two-component blend was not attractive by itself. Addition of the three other compounds was necessary for maximum attraction, rendering this the most complicated pheromone blend described for a Hemileuca species to date. Similarities between the sex pheromone of H. burnsi and that of the allopatric Hemileuca electra electra and differences between the blends of H. burnsi and that of the sympatric H. electra mojavensis support a case for reproductive character displacement in the pheromone communication channel of H. electra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号