首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用Instron电子拉伸机和Split-Hopkinson压杆(SHPB)实验装置,研究了准静态和动态压缩条件下冷轧和退火Cu板法向、轧向、横向的力学性能.不同应变率下的应力-应变曲线表明:冷轧和退火Cu板的流变应力均随应变率的增加而增加,表现出明显的应变率强化效应.冷轧Cu板准静态和动态压缩力学性能均呈现明显的各向异性:横向屈服强度最大,轧向最小,且低应变程度下的流变应力也具有同样规律.退火Cu板呈现近似各向同性.考虑准静态和动态变形时可能的塑性变形机制,基于微观晶体塑性变形理论的Taylor模型可定性地解释冷轧Cu板压缩力学性能的各向异性.  相似文献   

2.
采用静、动态力学性能测试、XRD织构测试、金相及电子显微镜等分析方法,对热轧钛合金力学性能的各向异性及其影响因素进行了研究。结果表明,在准静态和动态加载条件下,930℃热轧TC4钛合金均具有显著的力学性能各向异性,表现为沿轧向加载材料具有最高的塑性,沿横向加载具有最高的静、动态屈服强度,沿法向加载时材料的塑性和强度介于轧向和横向之间。微观分析表明,经热轧变形后,TC4钛合金中形成了强度较弱的{0002}〈1 100〉面织构;原始晶粒沿轧向被拉长而形成纤维组织;具有板状特征的片层集束,其面积最大面趋向于平行T面分布。TEM分析表明,热轧后TC4钛合金晶粒内形成了大量平行于横向的位错。以上4点原因共同引起了热轧TC4钛合金静、动态力学性能的各向异性。  相似文献   

3.
在840,870,900和930℃条件下分别对等轴Ti-6AL-4V合金进行总变形量为78%的热轧,随后对热轧Ti-6AL-4V合金的显微组织形貌、织构及动态力学性能进行研究。结果表明,当热轧温度达到900℃以上时,TI-6AL-4V合金中才发生再结晶及相变,显微组织类型由等轴组织变为双态组织,组织及再结晶等轴α晶粒的含量随热轧温度升高而增加。热轧Ti-6AL-4V合金中的织构随热轧温度变化而改变,但α晶粒的0001方向始终平行于轧板的法向。热轧Ti-6AL-4V合金的动态力学性能具有明显的各向异性,且各向异性规律随热轧温度的变化而改变。随着热轧温度的升高,沿法向加载时,合金的动态流变应力不断减小,绝热剪切临界失效应变不断增大;沿轧向加载时,合金的动态流变应力基本保持不变,但临界失效应变明显降低;沿横向加载时,合金的动态力学性能在840℃到900℃的热轧温度范围内基本保持不变,但当热轧温度为930℃时,合金的动态流变应力明显升高,临界失效应变明显降低。  相似文献   

4.
在840℃,870℃, 900℃和930℃条件下分别对等轴Ti-6AL-4V合金进行总变形量为78%的热轧,随后对热轧Ti-6AL-4V合金的显微组织形貌、织构及动态力学性能进行研究。结果表明,(1)当热轧温度达到900℃以上时,TI-6AL-4V合金中才发生再结晶及相变,显微组织类型由等轴组织变为双态组织,αs+β组织及再结晶等轴α晶粒的含量随热轧温度升高而增加。(2)热轧Ti-6AL-4V合金中的织构随热轧温度变化而改变,但α晶粒的<0001>方向始终平行于轧板的法向。(3)热轧Ti-6AL-4V合金的动态力学性能具有明显的各向异性,且各向异性规律随热轧温度的变化而改变。(4)随着热轧温度的升高,沿法向加载时,合金的动态流变应力不断减小,绝热剪切临界失效应变不断增大;沿轧向加载时,合金的动态流变应力基本保持不变,但临界失效应变明显降低;沿横向加载时,合金的动态力学性能在840℃到900℃的热轧温度范围内基本保持不变,但当热轧温度为930℃时,合金的动态流变应力明显升高,临界失效应变明显降低。  相似文献   

5.
通过室温准静态(应变率10-3s-1)、高温准静态(600℃,应变率10-3s-1)和室温动态(应变率103s-1)预压缩变形分别实现金属Be内部3种不同微观结构的形成,进而实现多晶金属Be宏观压缩力学性能的调节,研究了初始微观结构对多晶金属Be压缩力学性能的影响及作用机理。结果表明,3种不同初始微结构样品中,室温准静态预压样品压缩力学响应最硬,而室温动态预压样品最软。显微组织、宏观织构测试以及原位中子衍射力学实验测试表明,室温准静态预压样品形成"弱织构"型初始微结构,微观力学响应上表现为(00.2)晶面优先受力,且由于引入一定位错使形变硬化效应相较于其它试样更为明显;而室温动态预压样品形成"强织构"型初始微结构且存在一些微孔洞,微观力学响应上表现为(00.2)晶面主要受力,微孔洞参与部分应力配分抑制了形变硬化效应;高温准静态预压样品形成的"随机取向"型初始微结构,微观力学响应上表现为初期各晶面均等受力、(11.0)晶面逐渐受力增加,且位错密度降低使内部协调变形相对容易。通过不同尺度上微观结构的协同配合可以实现宏观力学性能的调节,基于此可定制满足特定服役场景需求的性能。  相似文献   

6.
为研究高应变速率冲击载荷下预压缩轧制态AZ31镁合金的退孪生行为与动态力学性能,将原始试样沿轧制方向(RD)进行真应变为4%的准静态预压缩,引入大量的■拉伸孪晶。利用分离式Hopkinson压杆(SHPB)装置对原始及预压缩AZ31镁合金样品沿板材法向(ND)进行应变速率为700、1000、1300和1600 s-1的高速冲击实验,并利用EBSD技术对原始试样、预压缩试样以及不同应变速率下的冲击试样进行微观组织分析。结果表明,相比于原始试样,预压缩AZ31镁合金试样内的基面织构强度明显减弱并形成c轴与RD平行的孪晶织构,由于拉伸孪晶界对母晶粒的分割作用使得平均晶粒尺寸明显降低。预压缩AZ31镁合金试样沿ND高速冲击时的主要变形机制为退孪生,随着冲击应变速率的增大,孪晶织构逐渐恢复至初始的强基面织构,孪晶面积分数和孪晶平均厚度均逐渐降低,平均晶粒尺寸逐渐增大。此外,沿ND冲击原始试样相比于预压缩试样具有更高的强度和更低的塑性,且在塑性变形过程中预压缩试样呈现出更加明显的应变速率敏感性。  相似文献   

7.
本文对泡沫铝芯体夹层板材的准静态和动态力学性能进行了试验研究.在SHPB设备上测试了不同冲击速度时的动态压缩响应,为了对比,也测试了静态压缩力学性能.结果表明泡沫铝芯体夹层板准静态和动态压缩过程均具有明显的三阶段特征.即弹性区、屈服平台区和致密区.随着应变率的增加,泡沫铝芯体夹层板的动态屈服强度增加,具有明显的应变率效应.  相似文献   

8.
研究了高应变速率下不同应变速率对AA6014-T4铝合金板材力学性能的影响。针对1.0 mm厚的AA6014-T4铝合金板材,采用Hopkinson拉杆试验装置进行了不同高应变速率下的动态拉伸试验,获得了745~4500 s-1范围内AA6014-T4铝合金板材的应力-应变数据,并对试验结果进行了对比分析。结果表明,当应变速率为745 s-1时,AA6014-T4铝合金产生塑性变形但试样未断裂;当应变速率为4500 s-1时,抗拉强度为238.45 MPa,塑性应变为0.467,高应变速率下的断裂应变明显大于准静态下的断裂应变。与准静态相比,高应变速率下的AA6014-T4铝合金板材具有一定应变强化效应。在高应变速率条件下,随应变速率的增加,铝合金板材的应变塑性效应得到明显强化。基于高应变速率条件下不同应变速率对AA6014-T4铝合金板材力学性能的影响试验研究和分析,得到了高应变速率对铝合金板材力学性能的影响规律。  相似文献   

9.
TB8钛合金的热变形组织与织构   总被引:2,自引:0,他引:2  
采用电子背散射衍射(EBSD)技术对新型亚稳态β型TB8钛合金的热压缩变形组织和织构进行研究。结果表明:TB8合金热压缩变形组织呈明显的形变不均匀特征;动态再结晶的形核及长大与亚结构的演变关系极为密切;变形过程中无论动态再结晶是否发生或进行完全,形变组织都存在较强织构,造成TB8钛合金力学性能及成形性的各向异性。  相似文献   

10.
结合力学性能测试和OM、SEM、EBSD分析,研究了Ti6321合金板材力学性能各向异性及其影响因素。结果表明:板坯组织类型对板材平面各向异性具有显著影响,等轴组织板坯和魏氏组织板坯制备的合金板材屈服强度、抗拉强度和冲击功均具有明显的平面各向异性,且等轴组织板坯制备板材的屈服强度、抗拉强度和冲击功平面各向异性指数高于魏氏组织板坯制备板材相应指数。不同板坯组织类型制备的热轧态板材,织构均主要为柱面织构({0002}⊥轧面),织构的方向为c轴倾向于平行于TD方向排布;经(980℃, 80 min)热处理后板材织构主要为基面织构({0002}//轧面),织构方向为c轴倾向于与ND平行。不同组织类型的板坯经相同的热变形和热处理,对应板材的金相组织、织构组分、再结晶程度和裂纹扩展路径存在明显的差异,这综合引起Ti6321合金板材力学性能的各向异性。  相似文献   

11.
采用热模拟试验机对轧制态6082-T6铝合金进行热压缩试验,分析了合金在变形温度100~400 ℃,应变速率0.01 s-1条件下的流变应力,对不同温度热变形的微观组织进行了表征。结果表明,轧制态6082铝合金的力学性能受变形温度和轧制方向的影响。变形过程中应力呈现负的温度敏感性,即随着变形温度升高,应力不断下降。合金表现出明显的力学性能各向异性,压缩强度在与轧制方向呈0°和90°较高,45°方向强度较低。经过热压缩变形后,与轧向呈不同方向的6082-T6铝合金的晶粒组织均沿着剪切力方向发生扭曲,同时,变形温度对晶粒组织的演变影响不大。随着变形温度的升高,合金基体内的位错密度明显下降,析出相发生粗化。  相似文献   

12.
Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45°, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.  相似文献   

13.
Influence of three different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet was investigated. Route A and Route B are unidirectional rolling (UR) where the rolling direction is along initial rolling direction (RD) and transverse direction (TD), respectively. Route C is cross rolling (CR) where the rolling direction is changed by 90° after each rolling pass. The microstructure and texture, tensile mechanical properties including strength and elongation, and also the anisotropy of the UR and CR sheets were investigated at room temperature. The XRD results indicate that the texture intensity of rolled samples gradually weakens from Route A to Route C. Compared with Route A and Route B rolled samples, the Route C rolled samples show a smaller planar anisotropy. The deep drawing tests reveal that cross rolling can avoid the occurrence of earing. Erichsen tests indicate that rolling routes have an effect on stretch formability of pure titanium sheet.  相似文献   

14.
通过异步/同步热轧实验研究了异步热轧工艺对钛合金显微组织和力学性能的影响。实验表征了试样的显微组织、力学性能、断口形貌和微观取向。实验结果表明,复杂应变路径较之简单应变路径能更好的细化晶粒及同时提高强度和塑性,并且表层晶粒小于中心晶粒。异步轧制工艺相比同步轧制能更好获得细小晶粒。异步轧制试样的强度及塑性值高于同步轧制试样相应值,提高异步速比可提高强度及塑性值。异步轧制试样的塑性变形机制可能是滑移,而同步轧制试样塑性变形机制为滑移或孪晶。  相似文献   

15.
分别以海绵钛和电解钛为原材料熔炼TC4钛合金,将熔炼后的铸锭进行热轧,研究两种原材料熔炼的铸锭轧制为TC4轧板后的组织与性能。结果表明,海绵钛TC4热轧板材组织较电解钛晶粒粗大,组织不均匀,而电解钛TC4热轧板材组织为均匀细长、条状交错的α相,呈现出类似网篮组织结构。海绵钛TC4板材的抗拉强度和洛氏硬度明显高于电解钛TC4钛合金板材,而电解钛TC4板材的塑性更好。海绵钛TC4板材的断裂方式为准解理断裂与韧性断裂的复合断裂,而电解钛TC4板材的断裂方式为韧性断裂。  相似文献   

16.
利用X射线衍射(XRD)方法测量了不同轧制状态,即不同变形温度和变形量条件下AZ31镁合金板材织构的变化特征。结果表明,经过轧制之后的AZ31镁合金板材形成强烈的基面织构;在250℃~400℃范围内,变形温度的升高、变形量的增大都会促进镁合金板材棱柱面、锥面等非基面滑移系的启动,从而影响各织构组分的锋锐程度和板材各向异性的强弱。随着变形温度的升高,镁合金板材的各向异性减弱;变形量的增大,镁合金板材的各向异性增强。  相似文献   

17.
在250 ℃对轧制-热处理态ZK60镁合金板材进行9道次不同路径的轧制试验。采用光学显微镜、电子万能试验机、SEM、XRD等研究了轧制试验后ZK60镁合金的显微组织、室温拉伸性能、断口形貌及晶粒择优取向。结果表明:轧制路径对ZK60镁合金板材的晶粒尺寸变化无明显影响,但压下量对镁合金组织内的孪晶变化有很大影响;轧制路径的变化对ZK60镁合金板材的各向异性和力学性能有较大影响,在交叉+45°的路径下轧制后ZK60镁合金板材,各向异性较弱,具有良好的综合力学性能和轧制成形能力,其屈服强度、抗拉强度和伸长率分别达到244.31 MPa、371.14 MPa和25.46%;交叉+45°路径轧制对ZK60镁合金的晶粒择优取向有明显影响,能够改善镁合金板材的晶粒择优取向和各向异性,提高ZK60镁合金的力学性能。  相似文献   

18.
采用不同的轧辊温度和速率制备AM50镁合金轧板,研究终轧工艺对镁板力学性能和织构特征的影响。研究表明:在轧辊温度为200°C和轧辊速率为5 m/min条件下制备的镁板的强度(极限抗拉强度:295 MPa;屈服强度:224 MPa)和伸长率(22.9%)之间达到较优组合;在热轧过程中,轧板的屈服强度主要取决于轧制温度,而织构强度则对轧辊速率更为敏感;提高轧制温度或轧辊速率均可改善AM50镁合金板材力学性能的各性异性。  相似文献   

19.
Uniaxial tension and press forming tests were carried out at two different strain rates and temperatures to investigate the formability of fine-grained AZ31B-O Mg alloy thin sheet. Formability parameters were determined by tensile test results. The tensile properties and formability parameters were correlated with the forming limit diagrams. The present work focused on the effects of loading orientation and deformation rate on formability. Anisotropic behaviors were observed in the mechanical properties. Maximum strengths were obtained in the direction perpendicular to the rolling direction (RD). It can be concluded that the formability of the rolled fine-grained AZ31B-O Mg alloy sheet can be influenced by loading orientation and deformation rate. Stretch formability can be enhanced at a higher deformation rate, resulting from a lower anisotropy and a higher work hardening effect. In contrast, the drawing processes can be performed at a lower deformation rate to take advantage of a higher anisotropic behavior. Specimens with the RD parallel to the major strain in the press forming tests can enhance stretch formability, whereas specimens with the RD perpendicular to the major strain can improve deep-drawability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号