首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In an effort to control the potential hazard of dairy product contamination by contact with processing surfaces, the efficiency of four commercial sanitizing agents was evaluated using the AOAC use-dilution method for their bactericidal activity at 4 and 20 degrees C against Listeria monocytogenes strain Scott-A attached on four types of surfaces (stainless steel, glass, polypropylene, and rubber). Our results indicate that all sanitizers tested were more efficient against L. monocytogenes attached to nonporous surfaces than to porous surfaces. After 10 min of contact time, the limit concentration of disinfectants was at least 5 to 10 times higher for sanitizing rubber than stainless steel or glass surfaces. Concentrations of each sanitizer needed to be higher at sanitation at 4 degrees C than at 20 degrees C to destroy L. monocytogenes attached to stainless steel, glass and rubber when surface contamination was achieved at 4 or 20 degrees C.  相似文献   

2.
One hundred one strains of Listeria monocytogenes isolated from seafood and cheese industry samples and from patients with listeriosis were assessed using a microtiter plate method for adhesion to polystyrene and stainless steel surfaces. The adhesion rate for these strains ranged from 3.10 to 35.29% with an inoculum of 8 x 10(8) cells per well. A strong correlation was found between adhesion to polystyrene and stainless steel microtiter plates, indicating that the intrinsic ability of L. monocytogenes to adhere to inert surfaces is stronger than the influence of the surface's physicochemical properties. The clinical strains were less adherent to inert surfaces than were the industrial strains. By integrating other factors such as location of the industrial strains, contamination type of the clinical strains, serotype, and pulsotype into the analysis, some weak but significant differences were noted. For the industrial isolates, the number of cells attached to both surfaces differed significantly depending on whether they were isolated from food or food-processing environments in the seafood and cheese industry. For clinical isolates, sporadic strains exhibited greater adhesion to polystyrene than did epidemic strains. Strains belonging to the pulsed-field gel electrophoretype clusters A and M (lineages II and I, respectively) were less able to adhere to polystyrene and stainless steel than were strains in the more common clusters.  相似文献   

3.
The adsorption isotherms of nisin to three food contact surfaces, stainless steel, polyethyleneterephthalate (PET), and rubber at 8, 25, 40, and 60 degrees C, were calculated. For all surfaces, the increase in temperature led to a decrease in the affinity between nisin and the surface. The rubber adsorbed a higher amount of nisin (0.697 microg/cm2) in comparison with PET (0.665 microg/cm2) and stainless steel (0.396 microg/cm2). Adsorption of nisin to the stainless steel surface described L-2 type curves for all temperatures assayed. However, for PET and rubber surfaces, the isotherms were L-2 type (at 40 and 60 degrees C) and L-4 type curves (at 8 and 25 degrees C). Nisin retained its antibacterial activity once adsorbed to the food contact surfaces and was able to inhibit the growth of Enterococcus hirae CECT 279 on Rothe agar medium. The attachment of three Listeria monocytogenes strains to the three surfaces was found to be dependent on the surface, the strain, and the initial bacterial suspension in contact with the surface. The adsorption of Nisaplin on surfaces reduced the attachment of all L. monocytogenes strains tested. The effect of PET-based bioactive packaging in food was very encouraging. When applied to a food system, nisin-adsorbed PET bottles reduced significantly (P < 0.05) the levels of the total aerobic plate counts in skim milk by approximately 1.4 log units after 24 days of refrigerated storage (4 degrees C), thus extending its shelf life.  相似文献   

4.
Individual and combined antimicrobial effects of monolaurin and acetic acid on Listeria monocytogenes planktonic cells or stainless-steel-adherent cells were determined in order to evaluate cell viability during a 25-min exposure period at 25 degrees C. A 10(7)-colony-forming units (CFU)/ml population of planktonic cells was completely inactivated by the synergistic combination of 1% acetic acid with 50 or 100 microg/ml of monolaurin within 25 or 20 min, respectively. Either compound alone caused partial but incomplete inactivation within the same time periods. A population of 10(5) CFU/cm2 of 1-day adherent cells on stainless steel was completely inactivated within 25 min, but with the highest concentrations of the combined chemicals, i.e., 1% acetic acid and 100 microg/ml of monolaurin. The combined chemical treatment again synergistically produced greater inhibition. A 10(6)-CFU/cm2 population of 7-day adherent cells was not completely inactivated within 25 min of exposure, although counts did decline. The results demonstrate increased resistance of attached L. monocytogenes to acetic acid and monolaurin and show that resistance increased with culture age. Combinations of organic acids and monolaurin might be considered as sanitizers of food contact surfaces, but activities of such combinations are likely to be less than other commonly used sanitizers.  相似文献   

5.
The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.  相似文献   

6.
This study investigates the resistance of Listeria monocytogenes biofilms on stainless steel surfaces to electrolyzed oxidizing (EO) water. A direct agar overlay method was used to estimate the attached bacteria on stainless steel coupons after an EO water treatment. A scraping method was also used to quantify the adherent cell populations after the EO water treatment. The stainless steel surface allowed 10 to 15% of the surface area to be covered by Listeria biofilm when the inoculated stainless steel coupon was incubated in 10% tryptic soy broth (TSB) at 23C for 48 h. When the stainless steel coupons containing adherent cells were treated with EO water (56 mg/L of residual chlorine) for 10, 30, 60, 180, and 300 s, adherent cell populations (10.3 log10 CFU/coupon) were reduced with increasing treatment time. Although the direct agar overlay methods do not quantify survival of single bacteria, only one to five cell clumps per coupon survived after 300 s of the EO water treatment. Using the scraping method, the adherent cell population on the stainless steel coupons was reduced by about 9 log cycles after 300 s of EO water treatment.  相似文献   

7.
The possibility of the transfer of persistent Listeria monocytogenes contamination from one plant to another with a dicing machine was evaluated, and possible reasons for persistent contamination were analyzed. A dicing machine that diced cooked meat products was transferred from plant A to plant B and then to plant C. After the transfer of the dicing machine, L. monocytogenes PFGE type I, originally found in plant A, was soon also found in plants B and C. This L. monocytogenes PFGE type I caused persistent contamination of the dicing lines in plants B and C. The persistent L. monocytogenes strain and three nonpersistent L. monocytogenes strains found in the dicing line of plant C were tested for adherence to stainless steel surfaces and minimal inhibitory concentrations of a quaternary ammonium compound and sodium hypochlorite, disinfectants widely used in the dicing lines. The persistent strain showed significantly higher adherence to stainless steel surfaces than did the nonpersistent strains. The minimal inhibitory concentrations of sodium hypochlorite were similar for all strains, and the minimal inhibitory concentrations of the quaternary ammonium compound for three of the L. monocytogenes PFGE types, including the persistent PFGE type, were high. All persistent L. monocytogenes PFGE type I isolates were found in an area with high hygienic standards, with the dicing machine being the first point of contamination. These observations show that the dicing machine sustained the contamination and suggest that the dicing machine transferred the persistent L. monocytogenes PFGE type from one plant to another.  相似文献   

8.
Three commercial sanitizers containing iodophor (I), peracetic acid/ hydrogen peroxide (PAH), or chlorhexidine gluconate (CG) were evaluated in vitro against planktonic and sessile Bacillus subtilis or Pseudomonas fluorescens cells grown in Standard One Nutrient Broth. Sessile cells were attached to stainless steel or polyurethane test surfaces. Planktonic and attached cells of both bacteria were enumerated by plate counts after sanitizer treatment for 1, 3, or 5 min. Sessile cells were dislodged from test surfaces by shaking them with beads. Cell morphologies were monitored by scanning electron microscopy (SEM). Attached B. subtilis and P. fluorescens cells on both surface types were less susceptible to all three sanitizers than their planktonic counterparts. PAH, I, and CG were equally effective against planktonic P. fluorescens cells, which were reduced by 99.999% after 1, 3, and 5 min exposure. PAH was the only sanitizer effective against attached P. fluorescens cells on both surface types; it reduced counts by < or = 99.9% after 1, 3, and 5 min exposure. PAH was also the most effective sanitizer against planktonic B. subtilis cells, reducing counts by 99.9% after 1, 3, and 5 min. Sessile B. subtilis cells on both surface types were the least susceptible to all sanitizers; counts were reduced by only 99.5% or less after exposure to PAH for 5 min. SEM revealed that planktonic and attached cells of both bacteria exhibited symptoms of surface roughness, indentations, and shape distortions after treatment with any of the sanitizers.  相似文献   

9.
Listeria monocytogenes is an important re-emerging pathogen which is commonly found in the environment. Many outbreaks have been associated with the contamination of food produce, often linked to cross-contamination from surfaces or equipment to prepared foodstuffs. In the present study a number of copper-base metal alloys have been used to assess the survival times of L. monocytogenes on different materials, in comparison with stainless steel. High concentrations (10(7)) of bacteria were placed on metal coupons cut from each alloy. After defined incubation times, coupons were placed in tubes containing phosphate buffered saline and vortexed to remove the cells. Aliquots were then plated onto tryptone blood agar plates and the number of colony forming units counted. The high concentration of bacteria was used to represent a "worst-case" scenario. The results indicate that survival is greatly reduced on a copper-base alloy compared to stainless steel. Viable cells could be detected on stainless steel after 24 h incubation at room temperature. On copper, brass, aluminium bronze and silicon bronze, no viable bacteria could be detected after 60 min incubation, indicating a 5 log reduction (the detection limit of the procedure was 100 bacteria). No cells could be detected from copper nickel and copper nickel zinc alloys, after 90 min incubation. The viability stain, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), confirmed these results, with actively respiring bacteria being clearly labelled on stainless steel after 24 h. The results suggest that careful choice of surface material could reduce the potential risk of cross-contamination in industrial, commercial and domestic environments.  相似文献   

10.
Biofilm formation by two poultry isolates of Salmonella on three commonly used food contact surfaces viz plastic, cement and stainless steel were studied. Biofilm formation of both the isolates showed a similar trend with the highest density being on plastic followed by cement and steel. Salmonella weltevreden formed biofilm with a cell density of 3.4 x 10(7), 1.57 x 10(6) and 3 x 10(5) cfu/cm2 on plastic, cement and steel respectively while Salmonella FCM 40 biofilm on plastic, cement and steel were of the order of 1.2 x 10(7), 4.96 x 10(6) and 2.23 x 10(5) cfu/cm2 respectively. The sensitivity of the biofilm cells grown on these surfaces to different levels of two sanitizers namely hypochlorite and iodophor for varying exposure times was studied. Biofilm cells offered greater resistance when compared to their planktonic counterparts. Such biofilm cells in a food processing unit are not usually removed by the normal cleaning procedure and therefore could be a source of contamination of foods coming in contact with such surfaces.  相似文献   

11.
Listeria monocytogenes is an important pathogen responsible for major outbreaks associated with food products. Adhesion to surfaces leads to significant modifications in cell physiology. The aim of this work was to determine the adhesion ability of 10 isolates of L. monocytogenes to eight materials commonly used in kitchens and to evaluate the viability of the adhered cells. The materials assayed were stainless steel 304, marble, granite, glass, polypropylene from a bowl and from a cutting board, and two kinds of silestone. All L. monocytogenes strains attached to all surfaces, although to different extents. L. monocytogenes adhered most tightly to granite and marble, followed by stainless steel 304, glass, silestones, and finally polypropylene surfaces. Surfaces at the threshold between hydrophobicity and hydrophilicity, with high electron acceptor capability and a regular pattern of roughness, were more prone to attachment. Polypropylene surfaces displayed the highest percentage of viable bacteria (nearly 100%), whereas marble and granite had a lower percentage of cultivable cells, 69.5 and 78.7%, respectively. The lowest percentage of culturable bacteria was found on white silestone (18.5%). These results indicate that there are differences in adhered cell viability on different materials. Cell viability assays are important to better understand the cross-contamination process because only adhered bacteria that remain viable are responsible for postprocess contamination.  相似文献   

12.
Biofilm formation on stainless steel by Salmonella enterica serovar Enteritidis PT4 during growth in three different nutritious conditions was studied. The ability of micro-organisms to generate biofilms on the stainless steel surfaces was studied for a total period of 18 days at 20 degrees C, under three different experimental treatments: (i) growth medium (tryptone soy broth) was not refreshed (no further nutrients were provided) during the incubation period, (ii) growth medium was renewed every 2 days and (iii) growth medium was renewed every 2 days and at the same time the planktonic cells from the old medium were transferred to the new fresh medium. It was found that biofilms developed better and a higher number of adherent cells (ca. 10(7) cfu/cm(2)) were recovered when the organism was grown in periodically renewed nutrient medium than when the growth medium was not refreshed. Regardless of the availability of nutrients, biofilm development was better (range 2-3 logs greater) when coupons were not totally covered by the growth medium and part of the surface was exposed to the air-liquid interface, than when coupons were submerged in the medium. The results suggest that existence of air-liquid interface and adequate nutrient conditions provide the best environment for Salmonella Enteritidis PT4 biofilm formation on stainless steel. The possible role of stationary phase planktonic cells in biofilm development by sessile/attached microbial cells is also discussed.  相似文献   

13.
The effects of surface type (stainless steel, acetal resin, and fiberglass reinforced plastic wall paneling [FRP]), soil, and temperature on the survival of Listeria monocytogenes, Salmonella spp., and Yersinia enterocolitica, in the presence of condensate were evaluated. Surface coupons--half soiled with sterile porcine serum--were exposed to cell suspensions made from individual five-strain cocktails composed of organisms from the same genus (10(7) CFU/ml) in Butterfield's phosphate buffer and incubated for 2 h at 25 degrees C allowing attachment of cells to coupon surfaces. Coupons were rinsed to remove unattached cells, incubated at either 4 or 10 degrees C under condensate-forming conditions, and sampled at six time intervals over a 15-day period. For enumeration, cells were removed from the coupons by vigorous shaking in 100 ml of Butterfield's phosphate buffer with 3 g of glass beads and plated on tryptic soy agar with 0.6% yeast extract. Stainless steel did not support the survival of Listeria as well as acetal resin or FRP. Acetal resin and stainless steel were less supportive of Salmonella than FRP. All surfaces supported the survival of Yersinia over the 15-day trial equally. Temperature had little effect on survival of all organisms across all surfaces with one exception. However, Yersinia displayed growth on FRP at 10 degrees C. but death at 4 degrees C. Serum had a protective effect on L. monocytogenes on all surfaces, with populations sustained at significantly (P < or = 0.05) higher numbers over time than unsoiled coupons. Serum didnot effect survival of Salmonella or Yersinia on stainless steel, acetal resin, or FRP.  相似文献   

14.
15.
The study was conducted to evaluate the attachment of three lactic acid bacteria (LAB) strains and their combination in a cocktail, to stainless steel coupons from a deli slicer, and their ability to inhibit the attachment of Listeria monocytogenes. In a previous study, three LAB strains, Pediococcus acidilactici, Lactobacillus amylovorus, and Lactobacillus animalis, were isolated from ready-to-eat meat and exhibited antilisterial effect. In the study reported here, hydrophobicity tests were determined according to the method of microbial adhesion to solvent. The attachment of the cells was evaluated on stainless steel coupons from deli slicers. Extracellular carbohydrates were determined with a colorimetric method. Based on these tests, L. animalis exhibited the greatest hydrophobicity (26.3%), and its adherence increased sharply from 24 to 72 h, whereas L. amylovorus yielded the lowest hydrophobicity (3.86%) and was weakly adherent. Although P. acidilactici had moderate hydrophobicity (10.1%), it adhered strongly. The attached LAB strains produced significantly (P < 0.05) higher total carbohydrates than their planktonic counterparts did, which is an important characteristic for attachment. Three conditions were simulated to evaluate the ability of the LAB cocktail (10(8) CFU/ml) to competitively exclude L. monocytogenes (10(3) CFU/ml) on the surface of the coupons. The coupons were pretreated with the LAB cocktail for 24 h prior to the addition of L. monocytogenes, simultaneously treated with the LAB cocktail and L. monocytogenes, or pretreated with L. monocytogenes 24 h prior to the addition of the LAB cocktail. The LAB cocktail was able to reduce the attachment L. monocytogenes significantly (P < 0.05). The LAB cocktail indicated potential attachment on stainless steel and bacteriostatic activity toward L. monocytogenes attached on stainless steel, which indicates a possible role for LAB as a biosanitizer in the food industry.  相似文献   

16.
Strains of Listeria monocytogenes vary in their ability to produce biofilms. This research determined if cell density, planktonic chlorine resistance, or subtype are associated with the resistance of L. monocytogenes biofilms to chlorine. Thirteen strains of L. monocytogenes were selected for this research based on biofilm accumulation on stainless steel and rep-PCR subtyping. These strains were challenged with chlorine to determine the resistance of individual strains of L. monocytogenes. Planktonic cells were exposed to 20 to 80 ppm sodium hypochlorite in 20 ppm increments for 5 min in triplicate per replication, and the experiment was replicated three times. The number of tubes with surviving L. monocytogenes was recorded for each isolate at each level of chlorine. Biofilms of each strain were grown on stainless steel coupons. The biofilms were exposed 60 ppm of sodium hypochlorite. When in planktonic culture, four strains were able to survive exposure to 40 ppm of chlorine, whereas four strains were able to survive 80 ppm of chlorine in at least one of three tubes. The remaining five strains survived exposure to 60 ppm of chlorine. Biofilms of 11 strains survived exposure to 60 ppm of chlorine. No association of biofilm chlorine resistance and planktonic chlorine resistance was observed; however, biofilm chorine resistance was similar for strains of the same subtype. Biofilm cell density was not associated with chlorine resistance. In addition, biofilms that survived chlorine treatment exhibited different biofilm morphologies. These data suggest that chlorine resistance mechanisms of planktonic cells and biofilms differ, with planktonic chlorine resistance being more affected by inducible traits, and biofilm chlorine resistance being more affected by traits not determined in this study.  相似文献   

17.
Contaminated surfaces of food processing equipment are believed to be a significant source of Listeria monocytogenes to foods. However, very little is known about the survival of Listeria in processing environments. In a mixed bacterial biofilm of L. monocytogenes and Flavobacterium spp., the number of L. monocytogenes cells attaching to stainless steel increased significantly compared to when L. monocytogenes was in a pure culture. The L. monocytogenes cells in the mixed biofilms were also recoverable for significantly longer exposure periods. On colonized coupons held at 15 degrees C and 75% humidity, decimal reduction times were 1.2 and 18.7 days for L. monocytogenes in pure and mixed biofilms, respectively. With increasing exposure time, the proportion of cells that were sublethally injured (defined as an inability to grow on selective agar) increased from 8.1% of the recoverable cell population at day 0 to 91.4% after 40 days' exposure. At 4 and -20 degrees C, decimal reduction times for L. monocytogenes in pure culture were 2.8 and 1.4 days, respectively, and in mixed culture, 10.5 and 14.4 days, respectively. The enhanced colonization and survival of L. monocytogenes on "unclean" surfaces increase the persistence of this pathogen in food processing environments, while the increase in the percentage of sublethally injured cells in the population with time may decrease the ability of enrichment regimes to detect it.  相似文献   

18.
Shiga toxigenic Escherichia coli (STEC) are important foodborne pathogens causing gastrointestinal disease worldwide. Bacterial attachment to food surfaces, such as stainless steel may lead to cross contamination of foods and subsequent foodborne disease. A variety of STEC isolates, including E. coli O157:H7/H- strains, were grown in planktonic (broth) and sessile (agar) culture, following which initial attachment to stainless steel was determined using epifluorescence microscopy. Experiments were performed to determine whether the number of bacteria attached to stainless steel differed between STEC strains and between the two modes of growth. No relationship was found between STEC strains and the number of bacteria attached to stainless steel. Five STEC strains, including one non-toxigenic O157 isolate, attached in significantly greater (p<0.05) numbers to stainless steel following growth in planktonic culture compared to sessile culture. In contrast, two clinical strains of O157:H7 attached in significantly greater (p<0.05) numbers following growth in sessile culture compared to planktonic culture. Thirteen out of twenty E. coli strains showed no significant difference (p>0.05) in attachment when grown in planktonic or sessile culture. The change of interfacial free energy between the bacterial strains and stainless steel was calculated and the influence of free energy in attachment was determined. Although a significant variation (p<0.05) in free energy values was found between STEC strains, no correlation was found between free energy values and bacterial counts on stainless steel. In addition, no correlation was also found between bacterial hydrophobicity and surface charge values or production of surface structures (type I fimbriae or flagella) (previously determined) with the number of bacteria attached to stainless steel. The results of this study suggest that different growth conditions (planktonic and sessile) can influence the attachment of STEC to stainless steel. Factors other than bacterial physicochemical properties and these surface structures may also influence STEC attachment to stainless steel.  相似文献   

19.
The capability of Arcobacter butzleri to attach to various water distribution pipe surfaces, such as stainless steel, copper, and plastic, was evaluated using scanning electron microscopy. Our results indicated that Arcobacter cells could easily attach to all surface types and the number of attached cells depended on the length of exposure and temperatures (4 and 20 degrees C). Extracellular fibrils were also observed on the stainless steel surface, especially after 72 h of contact times at both refrigeration and ambient temperatures. In addition, the surface energy value of each material was estimated by contact angle measurements using water, alpha-bromonaphthalene, and dimethylsulfoxide. The surface energy of A. butzleri was 58.6 mJ x m(-2) and the surface energy values of the three surfaces studied showed that plastic had a low energy surface (26.1 mJ x m(-2)) as did copper (45.8 mJ x m(-2)) and stainless steel (65.7 mJ x m(-2)).  相似文献   

20.
Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号