首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K.L. Dahm   《Tribology International》2007,40(10-12):1561
A new test apparatus has been developed to allow the sliding interface between the inert and “active” surfaces during tribo-corrosion to be viewed directly. This apparatus allows the nominal contact area to be viewed and will, it is hoped, eventually allow the real contact area and the role of wear debris to be clearly revealed. Initial experiments reciprocating glass plates against AISI 316 balls in 0.1 M Na2SO4 have shown that the corrosion current does not linearly depend on the wear scar area and that the electrochemical contribution to the total material loss increases with increasing sliding distance.  相似文献   

2.
This paper, the first of a two-part series, presents the empirical data obtained from in situ examination on the generation of wear particles on carbon nitride coatings by a spherical diamond counter-face during repeated sliding contacts. In particular, the effect of coating thickness, varying from 1 to 500 nm, on the generation of wear particles was examined.Based on the in situ examination, the shape transition maps for generated wear particles were obtained for carbon nitride coatings of various thickness. The results show that the critical number of friction cycles, Nc, for the transition from “no observable wear particles” to “wear particle generation” generally increased with increasing coating thickness. It was noted that up to 20 friction cycles, the maximum Hertzian contact pressure, Pmax, for “no observable wear particles” regime can be increased from 1.39Y to 1.53Y if silicon was coated with carbon nitride coating thicker than 10 nm, where Y is defined as the yield strength of silicon.  相似文献   

3.
The fundamental aim of the present research is to study the effect of dimple shape and area density on abrasive wear in lubricated sliding. The other aims are to recommend a method of obtaining the local linear wear of a textured ring on the basis of profilometric measurement and to analyse the changes in the surface topography of this ring with selection of parameters that could monitor the “zero-wear” process.The experiments were conducted on a block-on ring tester. The stationary block made from cast iron of 50 HRC hardness was ground. The rotated ground ring was made from 42CrMO4 steel of 32 HRC hardness. The rings were modified by a burnishing technique in order to obtain surfaces with oil pockets. Oil pockets of spherical and of drop shape were tested. The pit-area ratios were in the range: 7.5–20%. The tested assembly was lubricated by oil L-AN 46. Because of the great hardness of the co-acting parts the wear resistance test was carried out under artificially increased dustiness conditions. The dust consists mainly of SiO2 and Al2O3 particles. Measurement of local microscopic ring wear was made using a three-dimensional scanning instrument. The tendencies of ring surface topography changes during wear were analysed. Various methods of obtaining the local wear value during a low wear process were proposed and compared. We found that a spherical shape of dimples was superior to a drop shape with regard to wear resistance of steel rings.  相似文献   

4.
In the conventional finite element method (FEM), the dynamic characteristics of a longitudinally vibrating rod with mass density ρr, Young's modulus Er, cross-sectional area Ar and total length ℓr are considered to be the same as those of a helical spring with stiffness constant kr=ArEr/ℓr and total mass mr=ρrArr. For a lumped-mass model, the mass matrix of a rod element is a 2×2 diagonal one with each of its non-zero coefficients to be equal to one half of the total rod mass (i.e., 0.5mr). Furthermore, the dynamic characteristics of a rod on the basis of last “lumped-mass” model have been found to be very close to those on the basis of “consistent-mass” model. Thus, one can easily take into account of the inertial effect of a helical spring using a massless one with “one half of its total mass”, respectively, concentrated at its two ends (in Method 2) instead of modeling it by an elastic rod with uniform mass per unit length (in Method 1). When one more spring-mass system is attached to the beam, the total number of unknown constants increases “one” in Method 2 and “two” in Method 1, thus, Method 2 will reduce more effort than Method 1 for studying the dynamic behaviors of a beam carrying a number of spring-mass systems with mass of each helical spring considered. In this paper, the formulations of Methods 1 and 2 are presented first and then the numerical examples are illustrated to confirm the reliability of the presented theory and the developed computer programs. Finally, the effect concerning mass of each helical spring of the spring-mass systems is studied.  相似文献   

5.
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the hydrodynamic theory, viz. .This article introduces the equations of the above theory along with the viscosity variation over the piston stroke length; the piston ring profile is assumed as a double parabola with a central straight portion.The results of this analysis as applied to internal combustion engines are presented and compared with other earlier analysis.  相似文献   

6.
A simple kinematic model is developed which describes the main features of the process of the cutting of a plate by a rigid wedge. It is assumed in this model that the plate material curls up into two inclined cylinders as the wedge advances into the plate. This results in membrane stretching up to fracture of the material near the wedge tip, while the “flaps” in the wake of the cut undergo cylindrical bending. Self-consistent, single-term formulas for the indentation force and the energy absorption are arrived at by relating the “far-field” and “near-tip” deformation events through a single geometric parameter, the instantaneous rolling radius. Further analysis of this solution reveals a weak dependence on the wedge angle and a strong dependence on friction coefficient. The final equation for the approximate cutting force over a range of wedge semiangles 10° ≤ θ ≤ 30° and friction coefficients 0.1 ≤ μ ≤ 0.4 is: F = 3.28σ0(δt)0.2l0.4t1.6μ0.4, which is identical in form and characteristics to the empirical results recently reported by Lu and Calladine [Int. J. Mech. Sci.32, 295–313 (1990)].This analysis is believed to resolve a controversy recently developed in the literature over the interpretation of plate cutting experiments.  相似文献   

7.
In this work, two different methods for simulating damage propagation are presented and applied to fracture characterization of bonded joints in pure modes I and II. The cohesive damage model is based on a special developed interface finite element including a linear softening damage process. In the continuum damage model the softening process is performed by including a characteristic length associated with a given Gauss point. The models were applied to the simulation of “double cantilever beam” (DCB) and “end notched flexure” (ENF) tests used to obtain the critical strain release rates in mode I and II of bonded joints. In mode I it was observed, under certain conditions, a good agreement between the results obtained by the two models with the reference value of critical strain energy release rate in mode I (GIc), which is an inputted parameter. However, in mode II some discrepancies on the obtained GIIc values were observed between the two models. These inaccuracies can be explained by the simplifying assumptions inherent to the cohesive model. Better results were achieved considering the crack equivalent concept.  相似文献   

8.
From mechanical point of view, it is required to have a criterion for evaluating the failure of cellular solids (foams) under multiaxial loads. Well-documented experimental results in the literature show foams could fail by several mechanisms, e.g., elastic buckling, plastic yielding, brittle crushing or brittle fracture. In the previous years, both theoretical and phenomenological approaches have been applied to obtain the failure surface of various foams. The purpose of this paper is to present a simple approach to estimate the complete failure surface of “non-textured” foams. The predicted results of polymer and aluminum foams are compared with the experimental results reported in the literature. It is found that three selected tests will be sufficient to estimate the complete failure surface of a foam. The recommended testing stress states are σ123>0, σ123<0, and σ1=−σ2=−σ3 (or σ1=−σ2, σ3=0).  相似文献   

9.
Pseudo-merohedral twins are frequently observed in crystals displaying pseudo-symmetry. In these crystals, many [u v w] zone axis electron diffraction patterns are very close and can only be distinguished from intensity considerations. On conventional diffraction patterns (selected-area electron diffraction or microdiffraction), a strong dynamical behaviour averages the diffracted intensities so that only the positions of the reflections on a pattern can be considered. On precession electron diffraction patterns, the diffracted beams display an integrated intensity and a “few-beam” or “systematic row” behaviour prevails which strongly reduces the dynamical interactions. Therefore the diffracted intensity can be taken into account. A procedure based on observation of the weak extra-reflections connected with the pseudo-symmetry is given to identify without ambiguity any zone axis. It is successfully applied to the identification and characterization of {1 2 1} reflection twins present in the LaGaO3 perovskite.  相似文献   

10.
A review of literature about the effect of oil pockets on improvement of sliding elements tribological performance as well as about the changes of surface topography during “zero-wear” process is shown. The paper presents also the results of experimental investigations done in the Department of Manufacturing Processes and Production Organisation of Rzeszow University of Technology, connected with the creation of oil pockets on sliding surfaces. In order to simulate a deterministic surface a program for the visualisation of pits was written. The procedures for assessment of the oil pocket size of specific shape and oil pockets coverage are presented. The tendencies of changes of surface topography and oil pockets dimensions during “zero-wear” process are also described.  相似文献   

11.
When a thin disc is supported on the rim of a bowl, and its centre is pushed down by a finger, it adopts a characteristic conformation, known as a “developable cone”, and sketched in Fig. 1(a): the main, broadly conical, shape can only form if about one-quarter of the disc buckles upwards. There is a curved intersection between the two parts, which takes the form of a crescent-shaped “crease” near its apex, but with the flanking regions less tightly deformed. The “developable cone” is a recurring motif in a wide range of physical situations—crumpling, buckling, draping—and its mechanics provides a key to understand the phenomena, whether the disc deforms in the elastic or the plastic range. The task of this paper is to study only geometrical features of the “developable cone”. The first step is to replace the actual crease (Fig. 1(a)) by an idealised “sharp” crease (Fig. 1(b)). The second step is to study the apparently “large-rotation” problem of kinematics by means of an adaptation of the classical “yield-line” pattern of folding, but with a crucial added constraint that springs from Gauss's analysis of inextensional deformation. We illustrate the method via a graded sequence of examples, and we close with a discussion.  相似文献   

12.
A universal slip-line model and the corresponding hodograph for two-dimensional machining which can account for chip curl and chip back-flow when machining with a restricted contact tool are presented in this paper. Six major slip-line models previously developed for machining are briefly reviewed. It is shown that all the six models are special cases of the universal slip-line model presented in this paper. Dewhurst and Collins's matrix technique for numerically solving slip-line problems is employed in the mathematical modeling of the universal slip-line field. A key equation is given to determine the shape of the initial slip-line. A non-unique solution for machining processes when using restricted contact tools is obtained. The influence of four major input parameters, i.e. (a) hydrostatic pressure (PA) at a point on the intersection line of the shear plane and the work surface to be machined; (b) ratio of the frictional shear stress on the tool rake face to the material shear yield stress (τ/k); (c) ratio of the undeformed chip thickness to the length of the tool land (t1/h); and (d) tool primary rake angle (γ1), upon five major output parameters, i.e. (a) four slip-line field angles (θ, η1, η2, ψ); (b) non-dimensionalized cutting forces (Fc/kt1w and Ft/kt1w); (c) chip thickness (t2); (d) chip up-curl radius (Ru); and (e) chip back-flow angle (ηb), is theoretically established. The issue of the “built-up-edge” produced under certain conditions in machining processes is also studied. It is hoped that the research work of this paper will help in the understanding of the nature and the basic characteristics of machining processes.  相似文献   

13.
The relation of wear volume and the change of average surface roughness under the “zero-wear” condition was derived, with the assumption that the original profiles of the surface below the wear plane remain exactly the same as before, i.e. no plastic deformation. The flattening of asperities on an engineering rough surface was simulated with numerical techniques. The variation in wear volume and average surface roughness with the depth of wear was studied. The pattern and the correlation length of rough surface were checked and found to have no effect on the relation of wear volume and change of average roughness. The simulated results show that the variation of wear volume and the change of average roughness can be described by a second order polynomial. The model was also validated with experimental results obtained by using a two-disc wear machine.  相似文献   

14.
The laser-textured surfaces used for the touchdown area of computer hard-disks are sometimes covered with asperities consisting of a crater surrounded by a raised rim; contact with the read-head takes place over the rim of the crater, colloquially referred to as a “donut”. In order to analyse the load/compliance relation or the stiction to be expected in contact of hard disks, a number of authors have proposed load/compliance relations for contact between such a single doughnut and a plane, usually as simple modifications of the Hertz line contact equations. In this note simple, asymptotically correct, relations for a ring asperity are derived and verified by direct solutions. In particular, the relation between elastic deflection and load is approximately δ=(W2RE*)[ln(16R/b)+0.5)].  相似文献   

15.
A systematic method for evaluating the kinetic and dynamic loads sustained by stationary tools (as opposed to moving tools for which methods already exist) during high rate plastic forming is examined and exemplified by examples. It is essentially based on the momentum theorem for continua for incompressible flow, utilizing kinematically admissible velocity fields. In steady state forming processes (such as rolling, wire drawing, etc.), the difference between the active load (imposed or calculated a priori) and the reactive load, is formulated rigorously, whereas for non-steady processes (forging, impact extrusion, etc.) the formulation gives merely an approximation to the dynamic effects on the tools. The resulting velocity-dependent reactions on the tools are given in terms of two nondimensional numbers, namely, the “kinetic head” (u020) (called the Euler Number) and the “dynamic head” (ú0L0), which includes the machine speed (u0), machine acceleration ( ), material density , yield strength 0 and a characteristic dimension of the product, L. The same two non-dimensional heads emerged previously from energy-balance consideration in Ref. [1], while approximating dynamic loads on moving tools, hence a consistency is demonstrated. These heads are unavoidably multiplied by geometrical functions, which typify the specific process under consideration and may amplify (or diminish) the intensity of the dynamic effects. The present work is focussed on quantifying, by the above method, the inherent difference between the reactive load sustained by the non-moving tool (say, a die) and the acting load carried by the moving tool (piston, ram, etc.) In particular cases of very slow processes, these loads are equal by static equilibrium. In some practical processes (like rolling) their difference appears to be relatively small, whereas in others (like impact extrusion) it appears extremely large.  相似文献   

16.
In order to minimize the stiction force caused by contact of the extremely smooth surfaces of head sliders and disks in hard disk drives, texture is usually applied on the disk surface. For future contact/near-contact recording, the stiction-induced high friction between slider and disk will become a problem. Texture on the slider/disk interface will still be an expected method to reduce friction. Recently, it was suggested to texture the slider surface. A protective coating is usually required on the textured slider surface to reduce wear of the texture. The results showed that texture on the slider surface was effective in reducing the friction between head sliders and disks. On the other hand, the texture and coating on the slider surface increase the spacing between the read/write element and the magnetic layer of the disk. The necessary and effective texture height and coating thickness are still not clear. In the present research, island-type textures with different heights (3–18 mn) were formed on slider surfaces by ion-beam etching. Amorphous carbon nitride (a-CNx) coatings of different thicknesses (0–50 nm) were coated on the textured slider surfaces as a protective overcoat. The friction and wear properties of these sliders were evaluated by constant-speed drag tests against hard disks coated with diamond-like carbon (DLC). The results show that 2 nm texture on a slider surface is sufficient for low (0.3–0.5) and stable friction of the slider against the disk in a drag test, and coatings thicker than 5 nm show similar wear resistances of the texture on slider surfaces.  相似文献   

17.
In order to clarify the mechanical behavior of molecular chains in amorphous polymers, a molecular dynamics simulation is conducted on a nanoscopic specimen of amorphous polyethylene under uniaxial tension. The specimen involves 3542 random coil molecular chains composed of 500–1500 methylene monomers with about two million methylene groups. The stress–strain curve shows a linear elastic relationship at the initial stage of zz0.03 at . Then the material “yields” by elongating without stress increase up to the strain of 1.5, where strain hardening appears. Careful investigation of changes in dihedral angle and morphology of all molecular chains reveals that the gauchetrans transition takes place during yielding, generating a new network-like structure composed of entangled molecular clusters and oriented chains bridging them. The strain hardening is due to the directional orientation and stretching of molecular chains between entanglements in the nucleated structure.  相似文献   

18.
This paper presents the results of a series of experiments performed to examine the validity of a theoretical model for evaluation of cutting forces and machining error in ball end milling of curved surfaces. The experiments are carried out at various cutting conditions, for both contouring and ramping of convex and concave surfaces. A high precision machining center is used in the cutting tests. In contouring, the machining error is measured with an electric micrometer, while in ramping it is measured on a 3-coordinate measuring machine. The results show that in contouring, the cutting force component that influences the machining error decreases with an increase in milling position angle, while in ramping, the two force components that influence the machining error are hardly affected by the milling position angle. Moreover, in contouring, high machining accuracy is achieved in “Up cross-feed, Up cut” and “Down cross-feed, Down cut” modes, while in ramping, high machining accuracy is achieved in “Left cross-feed, Downward cut” and “Right cross-feed, Upward cut” modes. The theoretical and experimental results show reasonably good agreement.  相似文献   

19.
The paper examines the creep behavior of thick cylinders and spheres subjected to internal pressure and a negative temperature gradient in the radial direction. It is found that at stationary state the rate of radial displacement of the vessel wall is simply proportional to the material creep behavior associated with a single stress and temperature. Such “reference stresses” and “reference temperatures” are defined for spheres and cylinders of varying wall thicknesses. These reference stresses and reference temperatures are valid for any creep problem where the material behavior may be characterized by a function of the form exp (γTm. The extension of these results to variable pressure and temperature loading cases is discussed.  相似文献   

20.
The wear phenomenon of metals under dry sliding is, generally, divided into two modes of severe and mild wear. A discontinuous transition between the wear modes often takes place in a certain load range. The T1-transition is usually observed at lower levels of load or sliding velocity. There is a great difference in wear rate between severe and mild wear. This indicates that the occurrence of severe wear should be avoided, especially in the field of machine design to prevent energy loss, occurrence of noise and vibration, and life reduction of machines and their components. Therefore, it is important for machine designers to know the relationship between friction and wear and the difference in properties of the wear surfaces in the two wear modes. In this study, wear tests of 0.35% C steel in contact with itself under constant load were conducted in moist air at various contact loads under dry sliding. The friction and wear were measured continuously throughout each test. After the tests, the relationship between friction and wear and the difference in properties of the wear surfaces were investigated in each wear mode. From the results, the upper and lower critical loads (Pacr and PAcr) appeared between severe and mild wear. The phenomenon of zero wear has been newly found in the early period at very low loads. The zero wear continued for a long sliding distance and then changes to mild wear. The critical load between zero wear and mild wear is defined as Pzerowear. The load was changed once in a step-wise manner from low to high levels in process of test. Since the rubbing history under mild wear condition at the low load in the first stage affected the properties of wear surface, the wear mode at the high load in the second stage changed from ‘mild wear’ to ‘quasi-mild wear’ having a low rate. From the relationship between sliding distance necessary for the appearance of quasi-mild wear and contact load in the first stage, the boundary curve between severe wear and quasi-mild wear in the second stage is hyperbolic. This curve gradually approaches Pzerowear with decreasing contact load. Thus, Pzerowear is one of the important critical loads for elucidating the test results under varying load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号