首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To study the molecular basis of complete androgen insensitivity syndrome (AIS). STUDY DESIGN: The coding region of the human androgen receptor (hAR) gene in two women with AIS was amplified with polymerase chain reaction using 12 pairs of oligonucleotide primers and then sequenced with a dye terminator method. RESULTS: Both patients had mutation in exon E of the androgen-binding domain. In one patient, codon 732 GAC (aspartic acid) was changed to ACC (asparagine), and her CAG polyglutamine tract had 27 repeats. In the other patient, codon 765 GCC (alanine) was changed to ACC (threonine), and her CAG polyglutamine tract in exon A had 19 repeats. CONCLUSION: Except for CAG polyglutamine polymorphism, these two missense mutations were the only differences detected in the coding region of the hAR gene. Both mutations involved the CpG sequence, which has been regarded as a mutation hotspot. To the best of our knowledge, these two mutations have not been observed before in Chinese women. Elucidation of the molecular defects of AIS patients would be very helpful for genetic counseling and prenatal diagnosis.  相似文献   

2.
Neuronal intranuclear inclusions have been found in the brain of a transgenic mouse model of Huntington's disease and in necropsy brain tissue of patients with Huntington's disease. We suggest that neuronal intranuclear inclusions are the common neuropathology for all inherited diseases caused by expansion of polyglutamine repeats. We also suggest that patients with a pathological diagnosis of neuronal intranuclear hyaline inclusion disease may also have polyglutamine repeat expansions.  相似文献   

3.
Most functional studies of cyclic nucleotide-gated (CNG) channels have been confined to photoreceptors and olfactory epithelium, in which CNG channels are abundant and easy to study. The widespread distribution of CNG channels in tissues throughout the body has only recently been recognized and the functions of this channel family in many of these tissues remain largely unknown. The molecular biological and pharmacological properties of the CNG channel family are summarized in order to put in context studies aimed at probing CNG channel functions in these tissues using pharmacological and genetic methods. Compounds have now been identified that are useful in distinguishing CNG channel activated pathways from cAMP/cGMP dependent-protein kinases or other pathways. The ways in which these interact with CNG channels are understood and this knowledge is leading to the identification of more potent and more specific CNG channel subtype-specific agonists or antagonists. Recent molecular and genetic analyses have identified novel roles of CNG channels in neuronal development and plasticity in both invertebrates and vertebrates. Targeting CNG channels via specific drugs and genetic manipulation (such as knockout mice) will permit better understanding of the role of CNG channels in both basic and higher orders of brain function.  相似文献   

4.
To investigate possible biochemical mechanisms underlying the "toxic gain of function" associated with polyglutamine expansions, the ability of guinea pig liver tissue transglutaminase to catalyze covalent attachments of various polyamines to polyglutamine peptides was examined. Of the polyamines tested, spermine is the most active substrate, followed by spermidine and putrescine. Formation of covalent cross links between polyglutamine peptides and polyamines yields high-M(r) aggregates--a process that is favored with longer polyglutamines. In the presence of tissue transglutaminase, purified glyceraldehyde-3-phosphate dehydrogenase (a key glycolytic enzyme that binds tightly to the polyglutamine domains of both huntingtin and dentatorubral-pallidoluysian atrophy proteins) is covalently attached to polyglutamine peptides in vitro, resulting in the formation of high-M(r) aggregates. In addition, endogenous glyceraldehyde-3-phosphate dehydrogenase of a Balb-c 3T3 fibroblast cell line overexpressing human tissue transglutaminase forms cross-links with a Q60 polypeptide added to the cell homogenate. Possibly, expansion of polyglutamine domains (thus far known to occur in the gene products associated with at least seven neurodegenerative diseases) leads to increased/aberrant tissue transglutaminase-catalyzed cross-linking reactions with both polyamines and susceptible proteins, such as glyceraldehyde-3-phosphate dehydrogenase. Formation of cross-linked heteropolymers may lead to deposition of high-M(r) protein aggregates, thereby contributing to cell death.  相似文献   

5.
Molecular cloning of calcium channel subunit genes has identified an unexpectedly large number of genes and splicing variants, and a central problem of calcium channel biology is to now understand the functional significance of this genetic complexity. While electrophyisological, pharmacological, and molecular cloning techniques are providing one level of understanding, a complete understanding will require many additional kinds of studies, including genetic studies done in intact animals. In this regard, an intriguing variety of episodic diseases have recently been identified that result from defects in calcium channel genes. A study of these diseases illustrates the kind of insights into calcium channel function that can be expected from this method of inquiry.  相似文献   

6.
Expansion of CAG trinucleotide repeats coding for polyglutamine stretches has been identified for seven neurodegenerative diseases including Machado-Joseph disease (MJD). There are many common features shared among these disease such as genetic anticipation i.e. accelerated age at onset in successive generations, which is also a result of intergenerational increase in the size of expanded CAG repeats. To identify elements affecting the intergenerational instability of the CAG repeat, we investigated whether the CGG/GGG polymorphism at the 3' end of the CAG repeat in the MJD1 gene affects intergenerational instability. We suggested that an inter-allelic interaction is involved in the intergenerational instability of the CAG repeat and provide a clue to the molecular mechanisms of the instability of the CAG repeat.  相似文献   

7.
CAG/polyglutamine expansion has been shown to form the molecular basis of an increasing number of inherited neurodegenerative diseases. The mutation is likely to act by a dominant gain of function but the mechanism by which it leads to neuronal dysfunction and cell death is unknown. The proteins harbouring these polyglutamine tracts are unrelated and without exception are widely expressed with extensively overlapping expression patterns. The factors governing the cell specific nature of the neurodegeneration have yet to be understood. Upon a certain size threshold, expanded CAG repeats become unstable on transmission and a modest degree of somatic mosaicism is apparent. Similarly, the molecular basis of the instability and its tissue specificity has yet to be unravelled. Recent reports describing the first mouse models of CAG/polyglutamine disorders indicate that it will be possible to model both the pathogenic mechanism and the CAG repeat instability in the mouse. This has great potential and promise for uncovering the molecular basis of these diseases and developing therapeutic interventions.  相似文献   

8.
X-linked spinal and bulbar muscular atrophy (SBMA), Kennedy's disease, is a degenerative disease of the motor neurons that is associated with an increase in the number of CAG repeats encoding a polyglutamine stretch within the androgen receptor (AR). Recent work has demonstrated that the gene products associated with open reading frame triplet repeat expansions may be substrates for the cysteine protease cell death executioners, the caspases. However, the role that caspase cleavage plays in the cytotoxicity associated with expression of the disease-associated alleles is unknown. Here, we report the first conclusive evidence that caspase cleavage is a critical step in cytotoxicity; the expression of the AR with an expanded polyglutamine stretch enhances its ability to induce apoptosis when compared with the normal AR. The AR is cleaved by a caspase-3 subfamily protease at Asp146, and this cleavage is increased during apoptosis. Cleavage of the AR at Asp146 is critical for the induction of apoptosis by AR, as mutation of the cleavage site blocks the ability of the AR to induce cell death. Further, mutation of the caspase cleavage site at Asp146 blocks the ability of the SBMA AR to form perinuclear aggregates. These studies define a fundamental role for caspase cleavage in the induction of neural cell death by proteins displaying expanded polyglutamine tracts, and therefore suggest a strategy that may be useful to treat neurodegenerative diseases associated with polyglutamine repeat expansions.  相似文献   

9.
Different proteins bearing polyglutamine of excessive length are lethal to neurons and cause human disease of the central nervous system. In parts of the brain affected by Huntington's disease, the amount of the huntingtin with expanded polyglutamine is reduced and there appear huntingtin-containing polymers of larger molecular weight. We show here that huntingtin is a substrate of transglutaminase in vitro and that the rate constant of the reaction increases with length of the polyglutamine over a range of an order of magnitude. As a result, huntingtin with expanded polyglutamine is preferentially incorporated into polymers. Both disappearance of the huntingtin with expanded polyglutamine and its replacement by polymeric forms are prevented by inhibitors of transglutaminase. The effect of transglutaminase therefore duplicates the changes in the affected parts of the brain.  相似文献   

10.
Cloning of the Drosophila Shaker gene established that a neurological phenotype including locomotor dysfunction can be caused by a mutation in a voltage-gated potassium (K) channel gene. Shaker sequences have been used to isolate a large family of related K channel genes from both flies and mammals. Toward elucidating the evolutionary relationship between loci and the potential causal connection that K channels may have to mammalian genetic disorders, we report here the genetic mapping of 12-16 different murine, voltage-gated K channel genes. We find that multiple genes, in some cases from distantly related K channel subfamilies, occur in clusters in the mouse genome. These mapping results suggest that the K channel gene subfamilies arose through ancient localized gene duplication events, followed by chromosomal duplications and rearrangements as well as further gene duplication. We also note that several neurologic disorders of both mouse and human are associated with the chromosomal regions containing K channel genes.  相似文献   

11.
Adenosine 5'-triphosphate-sensitive potassium (KATP) channels couple metabolic events to membrane electrical activity in a variety of cell types. The cloning and reconstitution of the subunits of these channels demonstrate they are heteromultimers of inwardly rectifying potassium channel subunits (KIR6.x) and sulfonylurea receptors (SUR), members of the ATP-binding cassette (ABC) superfamily. Recent studies indicate that SUR and KIR6.x associate with 1:1 stoichiometry to assemble a large tetrameric channel, (SUR/KIR6.x)4. The KIR6.x subunits form the channel pore, whereas SUR is required for activation and regulation. Two KIR6.x genes and two SUR genes have been identified, and combinations of subunits give rise to KATP channel subtypes found in pancreatic beta-cells, neurons, and cardiac, skeletal, and smooth muscle. Mutations in both the SUR1 and KIR6.2 genes have been shown to cause familial hyperinsulinism, indicating the importance of the pancreatic beta-cell channel in the regulation of insulin secretion. The availability of cloned KATP channel genes opens the way for characterization of this family of ion channels and identification of additional genetic defects.  相似文献   

12.
Congenital myasthenic syndromes are a group of rare genetic disorders that compromise neuromuscular transmission. A subset of these disorders, the slow-channel congenital myasthenic syndrome (SCCMS), is dominantly inherited and has been shown to involve mutations within the muscle acetylcholine receptor (AChR). We have identified three new SCCMS mutations and a further familial case of the alpha G153S mutation. Single channel recordings from wild-type and mutant human AChR expressed in Xenopus oocytes demonstrate that each mutation prolongs channel activation episodes. The novel mutations alpha V156M, alpha T254I and alpha S269I are in different functional domains of the AChR alpha subunit. Whereas alpha T254I is in the pore-lining region, like five of six previously reported SCCMS mutations, alpha S269I and alpha V156M are in extracellular domains. alpha S269I lies within the short extracellular sequence between M2 and M3, and identifies a new region of muscle AChR involved in ACh binding/channel gating. alpha V156M, although located close to alpha G153S which has been shown to increase ACh binding affinity, appears to alter channel function through a different molecular mechanism. Our results demonstrate heterogeneity in the SCCMS, indicate new regions of the AChR involved in ACh binding/channel gating and highlight the potential role of mutations outside the pore-lining regions in altering channel function in other ion channel disorders.  相似文献   

13.
14.
Molecular genetic analyses have elucidated a class of inherited neurodegenerative disorders caused by expanded CAG repeats encoding polyglutamines (e.g. Huntington disease and Machado-Joseph disease). Proteins containing expanded polyglutamine repeats appear to precipitate by self-aggregation and, as a result, produce a core disease-related phenotype: neuronal cell death or degeneration. In other neurodegenerative disorders, such as Alzheimer disease, prion disease, Parkinson disease and amyotrophic lateral sclerosis, precipitation of abnormal proteins is also now considered to play a key role. These observations might lead to the elucidation of universal mechanisms for neurodegeneration and to effective treatments for many neurodegenerative disorders.  相似文献   

15.
Six inherited neurologic diseases, including Huntington's disease, result from the expansion of a CAG domain of the disease genes to produce a domain of more than 40 glutamines in the expressed protein. The mechanism by which expansion of this polyglutamine domain causes disease is unknown. Recent studies demonstrated oligomerization of polyglutamine-domain proteins in mammalian neurons. To study oligomerization of polyglutamine proteins and to identify heterologous protein interactions, varying length polyglutamine-green fluorescent protein fusion proteins were expressed in cultured COS-7 cells. The 19- and 35-glutamine fusion proteins (non-pathologic length) distributed diffusely throughout the cytoplasm. In contrast, 56- and 80-glutamine fusion proteins (pathologic length) formed fibrillar arrays resembling those previously observed in neurons in Huntington's disease and in a transgenic mouse model. These aggregates were intranuclear and intracytoplasmic. Intracytoplasmic aggregates were surrounded by collapsed intermediate filaments. The intermediate filament protein vimentin co-immunoisolated with expanded polyglutamine fusion proteins. This cellular model will expedite investigations into oligomerization of polyglutamine proteins and their interactions with other proteins.  相似文献   

16.
Huntington's disease is one of a growing number of hereditary neurodegenerative disorders caused by expansion of a polyglutamine stretch at the NH2 terminus of huntingtin. To explore whether polyglutamine-expanded huntingtin induces neuronal toxicity, I examined the expression of the full-length of huntingtin with 16, 48, or 89 polyglutamine repeats in a rat hippocampal neuronal cell (HN33). Expression of mutated huntingtin with 48 or 89 polyglutamine repeats stimulated c-Jun amino-terminal kinases (JNKs) activity and induced apoptotic cell death in HN33 cells while expression of normal huntingtin with 16 polyglutamine repeats had no toxic effect. The JNK activation precedes apoptotic cell death and co-expression of a dominant negative mutant form of stress-signaling kinase (SEK1) nearly completely blocked activation of JNKs and neuronal apoptosis mediated by mutated huntingtin. Taken together, my studies demonstrate that expression of polyglutamine-expanded huntingtin induces neuronal apoptosis via activation of the SEK1-JNK pathway.  相似文献   

17.
Potassium channels have been implicated in central roles in activity-dependent neural plasticity. The giant fiber escape pathway of Drosophila has been established as a model for analyzing habituation and its modification by memory mutations in an identified circuit. Several genes in Drosophila encoding K+ channel subunits have been characterized, permitting examination of the contributions of specific channel subunits to simple conditioning in an identified circuit that is amenable to genetic analysis. Our results show that mutations altering each of four K+ channel subunits (Sh, slo, eag, and Hk) have distinct effects on habituation at least as strong as those of dunce and rutabaga, memory mutants with defective cAMP metabolism (). Habituation, spontaneous recovery, and dishabituation of the electrically stimulated long-latency giant fiber pathway response were shown in each mutant type. Mutations of Sh (voltage-gated) and slo (Ca2+-gated) subunits enhanced and slowed habituation, respectively. However, mutations of eag and Hk subunits, which confer K+-current modulation, had even more extreme phenotypes, again enhancing and slowing habituation, respectively. In double mutants, Sh mutations moderated the strong phenotypes of eag and Hk, suggesting that their modulatory functions are best expressed in the presence of intact Sh subunits. Nonactivity-dependent responses (refractory period and latency) at two stages of the circuit were altered only in some mutants and do not account for modifications of habituation. Furthermore, failures of the long-latency response during habituation, which normally occur in labile connections in the brain, could be induced in the thoracic circuit stage in Hk mutants. Our work indicates that different K+ channel subunits play distinct roles in activity-dependent neural plasticity and thus can be incorporated along with second messenger "memory" loci to enrich the genetic analysis of learning and memory.  相似文献   

18.
Autosomal dominant spinocerebellar ataxias (SCA) form a group of clinically and genetically heterogeneous neurodegenerative disorders. The defect responsible for SCA3/Machado-Joseph disease (MJD) has been identified as an unstable and expanded (CAG)n trinucleotide repeat in the coding region of a novel gene of unknown function. The MJD1 gene product, ataxin-3, exists in several isoforms. We generated polyclonal antisera against an alternate carboxy terminus of ataxin-3. This isoform, ataxin-3c, is expressed as a protein of approximately 42 kDa in normal individuals but is significantly enlarged in affected patients confirming that the CAG repeat is part of the ataxin-3c isoform and is translated into a polyglutamine stretch, a feature common to all known CAG repeat disorders. Ataxin-3 like immunoreactivity was observed in all human brain regions and peripheral organs studied. In neuronal cells of control individuals, ataxin-3c was expressed cytoplasmatically and had a somatodendritic and axonal distribution. In SCA3 patients, however, C-terminal ataxin-3c antibodies as well as anti-ataxin-3 monoclonal antibodies (1 H9) and anti-ubiquitin antibodies detected intranuclear inclusions (NIs) in neuronal cells of affected brain regions. A monoclonal antibody, 2B6, directed against an internal part of the protein, barely detected these NIs implying proteolytic cleavage of ataxin-3 prior to its transport into the nucleus. These findings provide evidence that the alternate isoform of ataxin-3 is involved in the pathogenesis of SCA3/MJD. Intranuclear protein aggregates appear as a common feature of neurodegenerative polyglutamine disorders.  相似文献   

19.
In transiently transfected mammalian cells we have identified pharmacological consequences of a naturally occurring deletion mutation, delta KPQ, of the human heart Na+ channel alpha subunit that previously has been linked to one form of the long QT syndrome, an inherited heart disease. Our results show that the Class IB antiarrhythmic agent lidocaine blocks maintained inward current through and slows recovery from inactivation of delta KPQ-encoded Na+ channels. Block is greater for maintained than for peak current. Because incomplete inactivation of mutant Na+ channels is now thought to underlie the prolonged ventricular action potential, which is the phenotype of this disease, and we find that the delta KPQ mutation speeds the recovery from inactivation of drug-free mutant channels, our results provide evidence, for the first time, that clinically relevant dysfunctional properties of an ion channel can be selectively targeted on the basis of the molecular properties conferred on the channel by an inherited genetic disorder.  相似文献   

20.
Cyclic nucleotide-gated channels have been proposed to mediate the electrical response to light in the ventral photoreceptor cells of the horseshoe crab, Limulus polyphemus. However, a cyclic nucleotide-gated channel has not been identified from Limulus. We have cloned a putative full-length cyclic nucleotide-gated channel cDNA by screening cDNA libraries constructed from Limulus brain using a probe developed from Limulus ventral eye nerves. The putative full-length cDNA was derived from two overlapping partial cDNA clones. The open reading frame encodes 905 amino acids; the sequence shows 44% identity to that of the alpha subunit of the bovine rod cyclic GMP-gated channel over the region containing the transmembrane domains and the cyclic nucleotide binding domain. This Limulus channel has a novel C-terminal region of approximately 200 amino acids, containing three putative Src homology domain 3 binding motifs and a putative coiled-coil domain. The possibility that this cloned channel is the same as that detected previously in excised patches from the photoreceptive membrane of Limulus ventral photoreceptors is discussed in terms of its sequence and its expression in the ventral eye nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号