首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用有限元软件Deform-3D对室温纯钛等径弯曲通道变形(ECAP)过程进行数值模拟,分析了不同等通道截面形状条件下载荷变化、变形行为以及等效应变分布情况。结果表明:不同截面形状试样随着通道截面圆角增大,端部效应有所增加,试样与出口通道上壁之间的缝隙增大;不同通道截面挤压的行程载荷曲线趋势一致,常用的方形截面(R=0 mm)ECAP挤压时载荷最大;ECAP挤压后,试样纵向上等效应变从中部向两端递减,竖直方向上等效应变从上到下逐渐下降;方形(R=0 mm)和圆形(R=10 mm)截面ECAP挤压的等效应变较高,特别是圆形截面ECAP挤压心部等效应变要高于外表,这有别于其他塑性变形形式。  相似文献   

2.
7050铝合金等通道多转角挤压过程的三维有限元模拟   总被引:2,自引:0,他引:2  
对7050铝合金等通道多次转角挤压(equal-channel angular pressing,简称ECAP)过程中的变形行为进行三维有限元模拟,并研究了挤压过程中等效应变的演化以及载荷.位移曲线变化。为开发多道次ECAP工艺的模具设计、工艺参数提供理论指导依据。  相似文献   

3.
采用Deform-3D软件模拟了ZK60镁合金关于等通道角挤压(ECAP)及二次挤压的变形过程并进行试验验证。研究了ECAP和二次挤压对晶粒细化效果的影响,讨论了ECAP和二次挤压过程中材料流动和变形均匀性以及挤压载荷和有效应变的变化规律。模拟结果表明,在275~300℃进行ECAP,再在150℃下进行二次挤压,试样可以获得较大的分布均匀的应变,从而获得良好性能的超细ZK60镁合金。试验所得晶粒细化的结果与模拟结果符合。  相似文献   

4.
采用有限元软件DEFORM-3D对7075铝合金等通道角挤压(ECAP)过程进行数值模拟,分析了不同摩擦条件下载荷变化、变形行为以及等效应力应变分布情况,并利用7075铝合金动态再结晶模型对微观组织变化过程进行了预测。结果表明,随着摩擦因数增大,载荷峰值明显增大甚至成倍增长,且载荷值波动加剧,试样"端部效应"减弱,等效应力应变分布不均匀;试样中部稳定变形区晶粒随挤压道次增多而不断细化,试样与通道接触部位形成晶粒细小区,经过4道次挤压后,摩擦因数为0.4时稳定变形区的晶粒比摩擦因数为0.1时的细小。  相似文献   

5.
采用有限元技术模拟6061铝合金在室温下等通道转角挤压(ECAP)过程,分析了模具圆心角、摩擦因数对ECAP过程的影响。结果表明,圆心角减小,试样等效应变值增大且较为均匀,但是挤压载荷增加;摩擦对载荷的影响明显。单道次挤压后,试样变形不均匀。  相似文献   

6.
摩擦条件对高强铝合金ECAP变形作用的有限元模拟   总被引:1,自引:1,他引:0  
应用三维金属塑性成形模拟软件DEFORM-3D,对高强铝合金等通道转角挤压(ECAP)变形过程中摩擦力的作用进行了有限元模拟。计算模拟结果表明,挤压过程中载荷-位移曲线可分为快速增加、载荷稳定、快速增加、载荷稳定及快速下降5个阶段。摩擦系数越大,变形载荷越大;摩擦系数从0到0.3,最大载荷增加了2.1倍,所消耗的功增加了1.3倍,摩擦条件下,载荷一部分用于克服摩擦阻力,一部分用于材料变形,增大了能耗,同时减少了模具使用寿命。此外摩擦系数大,材料平均等效应变基本不变,而芯部应变不均匀程度增大。因此在等通道转角挤压的过程中,应保证挤压凹模内壁表面光洁、使用合适的润滑剂,以减小摩擦,减小载荷,从而改善晶粒细化及组织的均匀性效果。  相似文献   

7.
采用Deform-3D对TA1等通道角挤压过程进行数值模拟,分析材料变形过程的流动规律、等效应力应变分布情况及载荷变化情况。结果表明,材料在模具通道转角处发生剧烈塑性变形,成形载荷迅速增大,整个挤压过程载荷波动剧烈,截面上应力应变分布不均匀。进行了等温等通道角挤压变形试验,结果表明,TA1在400℃下经等通道角挤压后零件表面光顺,无起皱破裂现象;材料的抗拉强度由挤压前404 MPa提高到585.24 MPa,材料显微硬度由211.49 HV提高到261.32 HV。金相结果显示,粗大的原始晶粒挤压后明显细化,在晶粒内部存在少量变形孪晶。  相似文献   

8.
以比较两类模具对挤压效果影响为目的,通过Deform-3D塑性变形模拟软件分别对两道次下单通道ECAP和单道次平行双通道ECAP过程进行了模拟,分析了挤压冲头的载荷行程曲线和试样的等效应力应变情况。结果表明,转角区域45°斜截面产生剪切变形,随着挤压的推进,试样边缘小面积高应变区会不断扩充直到形成新的平面应变区。尽管平行双通道挤压理论上相当于单通道挤压两道次的效果,但前者比后者提高了6倍轴向应变量,相应地平行双通道挤压后的试样总体等效应变比两道次单通道挤压提升了约35%,从而获得了更好的应变强化效果,同时凸模载荷提升了2倍,达到了255 kN,对模具材料强度有更高的要求。  相似文献   

9.
采用能实现大变形的等通道转角挤压法(ECAP),对H65黄铜进行ECAP变形实验,分析了H65黄铜在经ECAP变形后β相形态和硬度的演变规律。结果表明:铸态时β相呈半连续网状和短棒状无方向性分布,经ECAP奇数次挤压,β相变成了长条状,分布方向确定,间距变得紧密;经ECAP偶数次挤压,β相变成了粗的短棒状,分布方向不定,间距变得稀疏;ECAP变形对H65黄铜试样硬度提升作用明显,铸态时硬度值为70.8 HV,在3道次ECAP挤压后硬度达到最大值239.3 HV;β相对合金整体硬度的贡献主要发生在第1道次挤压,随后道次的挤压β相自身硬度值变化不大。  相似文献   

10.
等径角挤扭工艺的研究   总被引:2,自引:0,他引:2  
针对等径角挤压(ECAP)工艺和挤扭(TE)工艺中,材料变形不均匀,1道次变形获得的应变量不够大的缺点,将2种工艺有机结合,提出了等径角挤扭(ECAPT)工艺。利用UG和DEFORM-3D软件进行几何造型和有限元模拟,研究变形过程、应力应变分布和载荷变化,并用纯铝进行2道次ECAPT实验,测量试样显微组织和力学性能的变化。结果表明,ECAPT使组织产生更大的应变量,随着行程的增加,载荷增大,在TE通道平稳阶段达最大值,试样头部挤出TE通道后载荷降低;材料的宏观形貌同模拟结果一致,显微组织发生了明显细化,其中第1道次z面和第2道次y面细化效果明显;力学性能得以较大提高,屈服强度由43.31MPa提升至52.19MPa,抗拉强度由71.30MPa提升至130.38MPa。  相似文献   

11.
吴战立  薛传妹  曾莉梅 《锻造与冲压》2009,(10):70-70,72,74
ECAP技术是一种基于大塑性变形技术的材料制备工艺.通过强烈塑性变形而获得亚微米甚至纳米级大尺寸块体材料.日益受到材料科学界的重视.被认为是制备超细晶材料最有应用前景的方法之一。本文利用有限元软件Deform-3D对ECAP变形过程进行数值模拟.分析试样宏观变形、微观组织性能的变化以及应变载荷的分布.同时进行ECAP挤压试验.对比分析ECAP变形过程.探寻ECAP试样变形机理。为ECAP应用于其他高性能材料和ECAP的进一步研究打下基础。  相似文献   

12.
《铸造技术》2017,(12):2948-2951
运用刚塑性有限元法对不同工艺参数下2017铝合金的等通道转角挤压(ECAP)过程进行了热力耦合的数值模拟,研究了不同挤压温度、挤压速度和摩擦因子对ECAP过程中挤压载荷、等效应力和等效应变分布的影响。结果表明:在ECAP过程中,提高挤压速度、降低挤压温度均会导致载荷峰值和等效应力峰值增大。挤压速度和挤压温度对等效应变的影响不大。减小摩擦因子可以有效降低挤压载荷峰值和平均等效应变,而等效应力峰值基本不受摩擦因子的影响。  相似文献   

13.
6061铝合金等通道转角挤压时的流变性能   总被引:1,自引:0,他引:1  
分别对退火态和固溶时效态6061铝合金进行8道次及4道次等通道转角挤压,用有限元软件Deform-3D模拟变形过程,研究连续大变形对组织性能的影响规律.结果表明:等通道挤压使晶粒破碎细化,金属流线走向与剖面对角线方向基本一致;退火态合金的表面硬度随变形道次增加而升高,各道次挤压载荷峰值没有随着变形道次增加而单调增加,而是经历一个升高、降低、再升高的过程.固溶时效态合金的表面硬度在2道次变形后达到了峰值,其载荷峰值也在第2道次变形时最高.硬度值的变化规律与强化因素及位错的运动有关,而载荷的变化规律与摩擦力的变化及其对载荷的贡献大小有关.模拟结果发现,挤压载荷峰值随着变形道次的增加而增大,与实测值不相符.由于剧烈变形使合金组织性能变化较大,因此需要适当修正材料本构关系,才能正确反映其流变行为.  相似文献   

14.
研究了等径角挤压(ECAP)对NiTiNb合金的变形行为和微观组织演变规律,并分析了挤压道次对组织的影响。结果表明,挤压过程中载荷先增大后迅速降低,4道次变形后,(Ti,Nb)2Ni硬脆相完全消失。此外,TiNi基体相经ECAP变形后明显细化。  相似文献   

15.
通过对不同变形路径等径弯曲通道(Equal Channel Angular Pressing,ECAP)变形过程的数值模拟,获得了4种路径8道次ECAP变形的等效应变分布图,分析了挤压试样变形不均匀现象及其形成原因。结果表明,试样尾部与冲头的摩擦、头部未发生明显剪切变形是这两个部位变形程度低的主要原因,造成了ECAP变形的不均匀现象,而这两个部位的不同转移方式,又形成了各种挤压路径的ECAP变形差异。试样中间截面上平均等效应变排序为CBCABA,分别为10.416、10.358、8.669和8.530;试样中间截面等效应变不均匀程度的系数排序为CBCABA,分别为0.090、0.112、0.154和0.467。若追求细化效果应选择路径BC和路径C;如果追求试样材料整体均匀性,可以采用路径A。  相似文献   

16.
室温下采用等径弯曲通道变形(Equal Channel Angular Pressing,ECAP)C方式进行了纯铜(99.95%)12道次挤压变形。通过等温和等时退火,研究ECAP变形后铜的退火行为,并研究了等径弯曲通道变形和退火后纯铜的显微硬度和显微结构变化。分析了ECAP应变量、退火时间和退火温度对超细晶铜的再结晶行为、抗软化性能的影响。结果表明:ECAP变形后的超细晶铜在退火过程中,表现出不连续再结晶现象;ECAP降低了铜的热稳定性,变形道次越高再结晶温度越低。退火后稳态晶粒尺寸随变形道次的增加而细化,硬度值随变形道次的增加而增大,回归分析表明,晶粒尺寸与硬度之间的关系符合Hall-Petch公式。  相似文献   

17.
等通道弯角挤压变形机理模拟与工艺参数优化   总被引:10,自引:0,他引:10  
通过等通道弯角挤压工艺 (EqualChannelAngularPressing ECAP)能够获得块状超细晶粒材料 (包括亚微米和纳米材料 )。模具几何形状、摩擦条件等工艺参数对挤压过程具有重要影响。本文应用作者自主开发的商品化软件 ,通过大量的有限元模拟 ,研究了过程参数对挤压件变形分布、挤压载荷的影响规律 ,给出了不同模具拐角和圆心角对ECAP挤压件变形区产生的累积等效应变、等效应力和载荷 行程曲线的影响 ,为优化模具形状和获得所要求的挤压件变形分布提供了大量有效的结果和规律。  相似文献   

18.
等通道转角挤压(Equal Channel Angular Pressing,ECAP)是一种制备超细晶材料的加工方法.利用ABAQUS有限元分析软件及网格再划分对纯钛的连续等通道转角挤压变形的Bc和C方式进行了三维的计算机有限元模拟,得到了应力应变分布规律和挤压力一位移曲线.结果表明,Bc方式在1、3、4道次挤压后纯钛试样的塑性应变梯度比C方式更小,而最大的压力是2道次.  相似文献   

19.
慕灿  王传斌 《热加工工艺》2014,(11):52-53,57
对固溶态Cu-Cr-Zr合金进行了等通道挤压(ECAP),研究了ECAP变形对固溶态Cu-Cr-Zr的显微硬度的影响。然后对合金进行了轧制,研究了轧制前后Cu-Cr-Zr合金的硬度。结果表明:材料的显微硬度随着ECAP道次的升高而增强。轧制后,相同道次ECAP变形Cu-Cr-Zr合金显微硬度有明显的提高。  相似文献   

20.
以6061铝合金为对象采用数值模拟和实验验证的方法研究了双向等通道挤压过程金属流动规律。发现双向等通道技术能够在材料内部造成剧烈的剪切变形,具有晶粒细化和形变强化作用,可以通过调整摩擦系数对变形过程进行调控。通过对6061铝合金A、B 2种路径4道次双向等通道挤压发现,双向等通道挤压具有强烈的形变强化作用,在相同道次下,B路径等效应变量大于A路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号