首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用拉伸性能测试、金相观察、SEM和EDS等方法研究了不同热处理工艺对Fe-30Mn-3Si-4AlTWIP钢微观组织、拉伸力学性能及断口形貌的影响,并采用X射线衍射仪测定材料的物相组成。结果表明,冷却速度越快,TWIP钢的延伸率和强度越高;热处理后其室温组织为含有退火孪晶的单一奥氏体,冷却速度越小,奥氏体晶粒和退火孪晶的尺寸越大。拉伸时发生典型的延性断裂,在拉伸过程中退火孪晶转变成形变孪晶,使材料的塑性提高。  相似文献   

2.
通过对Fe-24Mn-0.7Si-1.0Al TWIP钢分别在700℃和1000℃退火不同时间,研究退火对合金显微结构和硬度的影响,并讨论了合金再结晶行为及其对组织性能的影响规律。结果显示:合金通过亚晶界迁移机制形成再结晶晶核,进而长大实现再结晶。合金分别在700℃保温5 min或1000℃保温1 min即可完成再结晶。完成再结晶后随着保温时间延长,晶粒尺寸先迅速增大后趋于饱和,而合金硬度先快速降低后趋于平缓。再结晶过程中位错的消失是导致硬度下降的主要原因。  相似文献   

3.
向Fe-25Mn-3Si-3Al TWIP钢中添加0.35%的Nb,提高钢中C元素含量至0.1%,并配合适当热处理工艺以提高TWIP钢的屈服强度。结果表明:改进后的Fe-25Mn-3Si-3Al-0.3Nb-0.1C钢的屈服强度由原来的320 MPa提高至445 MPa,均匀伸长率则由65%降低至55%。Nb元素的添加会强烈阻碍TWIP钢的再结晶晶粒的长大,显著细化TWIP钢的奥氏体晶粒,并且添加的Nb、C元素经退火处理后主要以纳米级Nb C沉淀相的形式弥散分布于奥氏体基体上,这些细小的沉淀相将通过Orowan机制进一步提高TWIP钢的强度。此外,Nb、C元素的添加并未显著改变室温下Fe-25Mn-3Si-3Al TWIP钢的塑性变形机制,应变诱发孪晶仍然是Fe-25Mn-3Si-3Al-0.3Nb-0.1C钢的主要变形机制,奥氏体基体仍然维持着较低的层错能。通过细晶强化和沉淀强化的双重作用显著提高Fe-25Mn-3Si-3Al TWIP钢的强度,同时奥氏体基体的TWIP效应保证了改进后的TWIP钢仍具有良好的塑性。  相似文献   

4.
在变形温度800~1100℃,变形速率0.01~5 s-1范围内,利用Gleeble-1500D热模拟试验机,采用等温压缩实验研究了Fe-25Mn-3Al高锰奥氏体TWIP钢的热变形行为。结果表明,Fe-25Mn-3Al钢流变应力曲线出现一个明显的流变应力峰值,峰值之后流变应力逐渐降低,主要为稳态流变特征。双曲正弦形式的Arrhenius模型可以较好地描述Fe-25Mn-3Al钢热变形流变应力,钢的热变形激活能Q为365.2 kJ/mol。动态再结晶机制为Fe-25Mn-3Al钢热变形过程中最主要的动态软化机制。  相似文献   

5.
采用XRD、光学显微镜、扫描电镜、拉伸试验机和冲击试验机等研究了终轧温度(900 ℃和1000 ℃)对Cu合金化Fe-18Mn-0.6C TWIP钢微观组织和力学性能的影响。结果表明,低温终轧会明显提高TWIP钢的强度,但会使伸长率和强塑积降低;高温终轧更有利于提高TWIP钢塑性和室温冲击性能。高温终轧时可获得较大尺寸的奥氏体晶粒,降低孪生所需的临界应力,具有更高的应变强化能力,拉伸断口和冲击断口的韧窝更大更深,表现出优异的塑性和韧性。  相似文献   

6.
以冷轧Fe-24.38Mn-0.44C钢为研究对象,通过光学显微镜(OM)、透射电镜(TEM)、室温拉伸等试验手段,研究了不同退火温度(部分再结晶退火、再结晶退火以及高温退火)下其微观组织及力学性能的演变。结果表明,随着退火温度降低,试验钢的微观组织由高温退火时粗大的无畸变等轴再结晶晶粒逐渐向纳米级变形孪晶和细小的再结晶晶粒混合组织转变,强化机制逐渐由孪生滑移为主向位错滑移为主纳米孪晶强化为辅的机制转变,导致试验钢屈服强度迅速提高,屈强比由0.36提高到0.49,伸长率有所降低。  相似文献   

7.
通过光学显微镜、扫描电镜、电子万能拉伸试验机、X射线衍射以及背散射电子衍射等技术方法研究了退火温度对冷轧态Fe-0.4C-10Mn-6Al高强钢的组织与力学性能的影响。结果表明,试验钢冷轧后的微观组织主要为δ-铁素体、α-铁素体、奥氏体、马氏体与碳化物,退火后的组织主要由δ-铁素体、α-铁素体、奥氏体与碳化物组成,其中奥氏体含量因马氏体逆转变而随着退火温度升高而增加。随着退火温度的升高,屈服强度、抗拉强度均逐渐降低,伸长率逐渐提高。当退火温度达到800 ℃时,试验钢的强塑积达到27.84 GPa·%,有较好的综合力学性能。  相似文献   

8.
通过扫描电镜(SEM)、X射线衍射仪(XRD)和电子背散射衍射(EBSD)等手段研究了Fe-15Mn-10Al-0. 3C冷轧钢在840~900℃温度范围保温不同时间后的组织和性能演变规律。结果表明:退火温度为840和870℃时,铁素体晶界上形成了二次奥氏体,且含量随着退火温度的升高而减少,直至900℃退火时无二次奥氏体形成;此外,不同温度退火的钢奥氏体内均发生了γ→α同素异构转变,其转变量随着退火时间的延长而增加。二次奥氏体的形成可以显著提升钢的塑性,但屈服强度和抗拉强度降低;γ→α转变可以改善钢的塑性。  相似文献   

9.
通过单向拉伸试验研究了Fe-20Mn-3Si-3Al-0.045CTWIP钢在不同变形量、不同应变速率及不同变形温度下的力学性能。结果表明:当变形量为10%,时试验钢具有较好的综合力学性能,其屈服强度达到770MPa,抗拉强度为1 360MPa,断后伸长率为30%。室温变形条件下,当应变速率为1×10-4s-1时,热轧态样品的屈服强度和抗拉强度分别为510MPa及860MPa,拉伸伸长率为58%;当应变速率增加为1×10-1s-1时,其屈服强度及抗拉强度分别增至630MPa和970MPa,伸长率则下降为39%;随着变形温度的上升,材料的伸长率及抗拉强度均下降。增加变形温度至300℃时,该材料在应变速率为1×10-1s-1变形的抗拉强度降为764MPa,拉伸伸长率下降为25%。  相似文献   

10.
利用扫描电镜、万能试验机、X射线衍射仪等研究了两相区不同温度退火对Fe-0.12C-4.85Mn-0.24Si钢组织与力学性能的影响。结果表明,随着退火温度的升高,Fe-0.12C-4.85Mn-0.24Si钢晶粒尺寸逐渐增大,碳化物逐渐溶解,组织中奥氏体体积分数先增加后减少。640 ℃退火的Fe-0.12C-4.85Mn-0.24Si钢的奥氏体体积分数最高,为22.1%。随着退火温度的升高,Fe-0.12C-4.85Mn-0.24Si钢的抗拉强度逐渐升高,伸长率和强塑积先升高后降低,640 ℃退火的Fe-0.12C-4.85Mn-0.24Si钢的伸长率和强塑积最高,分别为30.4%和28.47 GPa·%。  相似文献   

11.
利用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)、电子背散射衍射(EBSD)和室温拉伸力学性能测试等手段,研究了840~1 000℃范围内退火温度对冷轧轻质Fe-15Mn-8. 5Al-1. 5Si钢组织和力学性能的影响。结果表明:1 000℃×1 min退火的试样力学性能最优,抗拉强度为1 006 MPa,断后伸长率为41. 7%,强塑积高达42 GPa·%; 840和870℃退火的试样奥氏体内和相界处析出了κ-碳化物,严重影响了奥氏体的变形性能,易导致解理断裂,降低钢的塑性。高于900℃退火时,碳化物消失。退火温度的提高改变了α-铁素体和奥氏体两相间的位向关系,导致1 000℃退火组织两相滑移系趋于平行的晶粒比例增多,改善了位错的相间滑移能力,降低了γ/α相界处产生裂纹的可能性,试验钢的塑性得到提升。  相似文献   

12.
王英虎 《金属热处理》2019,44(8):185-191
通过采用OM、SEM、XRD等方法,对不同固溶热处理温度下Fe-12Mn-8. 5Al-0. 8C低密度钢的力学性能和组织演变规律进行了研究。试验结果表明,铸态组织主要包含有铁素体、奥氏体和κ-碳化物3种相。在700、750℃固溶处理后,Fe-12Mn-8. 5Al-0. 8C钢的组织为铁素体、奥氏体和κ-碳化物,其铁素体和奥氏体晶界处存在的大量碳化物导致其力学性能很差。κ-碳化物的溶解温度在800℃左右,随着固溶温度升高,晶内及晶界处碳化物含量逐渐减少直至消失。850~1000℃固溶处理后,试验钢基体组织为奥氏体,随着固溶温度升高,铁素体的含量增加。在1000℃固溶处理时,铁素体由柱状转变成球状,其对奥氏体基体的割裂作用减少,所以在1000℃时试验钢力学性能最好,其抗拉强度达696.4 MPa。同时,Fe-12Mn-8.5Al-0.8C钢的密度为7.0 g/cm3,相比纯铁达到10%的减重效果。  相似文献   

13.
通过真空熔炼制备出高强韧Fe-20Mn-3Cu-1.3C TWIP钢。针对该合金钢凝固组织中易形成显微缩松的问题,在总热轧压下率相同的条件下,研究了道次平均压下率的变化对消除合金钢微孔缺陷和力学性能的影响。结果表明,随着道次平均压下率由35.96%提高至48.75%,合金内部微孔面密度显著降低,平均晶粒尺寸减小,合金的屈服强度、抗拉强度、强塑积大幅度提高。当道次平均压下率为48.75%时,屈服强度、抗拉强度和伸长率分别为536.70 MPa、1161.49 MPa、95.60%,强塑积高达111038.44 MPa.%,与当道次平均压下率为35.96%时相比,强塑积提高了47.70%,这一结果是目前TWIP钢综合力学性能数据的最高值。表明提高道次平均压下率消除缩松缺陷是提高该TWIP钢力学性能的关键。  相似文献   

14.
退火温度对C-Mn-P-V高强度TRIP钢组织和力学性能的影响   总被引:2,自引:1,他引:1  
通过不同温度的两相区退火处理,研究了C-Mn-P-V高强度TRIP钢的组织和力学性能.结果表明,在780~820℃范围内,随两相区退火温度的降低,铁素体量、残余奥氏体量增加,贝氏体量减少,抗拉强度Rm降低.TRIP钢中残余奥氏体量的增加明显提高延伸率,对强度也有贡献.780℃退火的工艺可获得最大强塑积-Rm·A=16630MPa·%.  相似文献   

15.
彭侠超  唐恩  张香云 《金属热处理》2024,49(11):112-117
通过JMat-Pro模拟软件确定了 Fe-2.0Mn-4.7Al-0.4C低密度钢退火温度为860 ℃,通过光学显微镜、扫描电镜、电子万能材料试验机等检测方法研究了退火时间对热轧态Fe-2.0Mn-4.7Al-0.4C钢的组织及力学性能的影响.结果表明,热轧态Fe-2.0Mn-4.7Al-0.4C钢经过退火处理,其组织由δ铁素体、α铁素体、马氏体、珠光体和渗碳体转变为δ铁素体、珠光体和残留奥氏体.退火保温120 min时,拉伸断口形貌显示试样由脆性断裂转变为韧性断裂,材料抗拉强度为515.6 MPa,屈服强度为361.0 MPa,伸长率达到最大值35.4%,强塑积达到18.3 GPa·%,综合力学性能达到最好.而退火时间过长,达到180 min时,组织晶粒长大并发生聚集,位错运动消失,导致材料韧性降低,增加了材料的脆性,断口以韧窝和较为平滑的解理面为主.  相似文献   

16.
对800 MPa级别DP钢分别进行了780、800、820和840℃两相区退火温度试验,利用扫描电镜分析组织比例,研究对应的组织和力学性能检验结果。结果表明:随着两相区退火温度的升高,马氏体体积分数逐渐升高,马氏体晶粒尺寸逐渐增大,钢板的抗拉强度不断升高,伸长率呈逐渐下降趋势,在800℃DP钢力学性能良好,这与800℃时相对更好的组织比例、均匀的分布及晶粒尺寸相一致,说明两相良好配比及微观组织形态可以改善DP钢的塑性,进而获得最佳的强塑组合。在800℃的两相区退火温度时,强塑积可以达到1.83×10~4MPa·%,为800 MPa级别DP钢退火工艺提供了实际指导。  相似文献   

17.
以冷轧双相钢DP980为研究对象,探讨了退火温度对钢板组织性能的影响。结果表明:当退火温度从600℃增加到660℃,随着再结晶程度的逐步提高,强度逐渐降低;再结晶完成后,DP980钢退火温度从720℃增加到820℃,随着加热过程中获得的奥氏体含量的增多,冷却后硬相的量更多,宏观表现为强度逐渐升高;由热处理过程的膨胀曲线结合组织观察发现,冷却后的硬相中既有马氏体又有贝氏体。  相似文献   

18.
对0.2C-2.96Mn-1.73Si钢进行IQP(Intercritical heating quenching and partitioning)处理,获得超细化铁素体、马氏体和残留奥氏体多相组织。采用SEM、XRD和拉伸试验机研究了配分温度对试验钢显微组织和力学性能的影响。结果表明,随配分温度的升高,试验钢的抗拉强度逐渐下降,屈服强度和伸长率均先增大后减小。试验钢中残留奥氏体含量随配分温度的升高呈先增加后降低的趋势。配分温度为400 ℃时,残留奥氏体的含量最高,TRIP效应能够提供持久的加工硬化,试验钢获得了最高的均匀变形能力,抗拉强度为1444 MPa,伸长率为20.13%,强塑积达到29 GPa·%,综合力学性能最佳。  相似文献   

19.
王英虎 《热加工工艺》2021,(16):122-125,130
采用SEM、EDS等方法,分析了Fe-12Mn-8.5Al-0.8C低密度钢时效后的力学性能、组织以及断裂行为,研究了其在500℃时效处理过程中碳化物与力学性能的转变规律.结果 表明,时效处理对试验钢的组织及力学性能影响较大,随着时效时间增长,碳化物由细小球状及短杆状变为针状及长条状,抗拉强度先升高后降低,断后伸长率降...  相似文献   

20.
针对Fe-30Mn-10Al-1C低密度钢,系统研究了不同退火工艺对其组织及力学性能的影响,分析了该材料的韧性转变机制。结果表明,Fe-30Mn-10Al-1C在800 ℃退火析出κ碳化物和铁素体,抗拉强度>1100 MPa,但-40 ℃冲击性能较差;850 ℃退火后κ碳化物消失,试验钢的强塑积提升,韧性增加;900 ℃退火得到奥氏体单相组织,获得良好的强塑性和强韧性匹配。Fe-30Mn-10Al-1C钢的韧性与κ碳化物、铁素体和奥氏体晶粒尺寸有关,并且与奥氏体晶粒尺寸存在反尺寸关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号